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1. Introduction

Exact or at least approximate controllability and stabilization problems are im-
portant in the analysis of many engineering systems. One can distinguish three
essential topics which naturally arise: rigorous mathematical studies, approxima-
tion methods and technical realization of controls. This review is focused on the
first two topics. For technical aspects the reader is referred to Armstrong-Hélouvry
et al. (1994), Banks (1975), Banks et al. (1996), Benjeddou et al. (1997, 1999),
Destuynder et al. (1992), Holnicki-Szulc and Rodellar (1999), Tani et al. (1998),
Trindade et al. (1998), and Zhou and Tzou (2000).

We presume that the reader is familiar, more or less, with the books by Ko-
mornik (1994b), Lagnese (1989), Lagnese and Lions (1988) and Lions (1988a,b).

An excellent review paper by Russel (1978) still serves as a good introduction to
mathematical aspects of controllability, observability and stabilization of systems
described mainly by partial differential equations, cf. also Komornik (1988, 1989,
1995, 1997), Nikolski (1998), Ralston (1982).

∗ This paper is dedicated to the memory of Professor P.D. Panagiotopoulos
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Bardos et al. (1992) formulated the following general principle: “To control,
observe, or stabilize solutions of hyperbolic equations, it is necessary that we ob-
serve or control at least one point of each ray of geometric optics”. These authors
extended this principle to space dimensions higher than one. In higher dimensions,
however, the analysis is not as elementary as in dimension one. Advantages and
disadvantages of the proposed approach were also discussed.

The books by Avdonin and Ivanov (1989, 1995) offer a systematic approach
to the method of moments in controllability problems including applications to
one-dimensional problems of elasticity (strings, membranes).

Lebeau (1992) generalized the results due to Bardos, Lebeau and Rauch (Ap-
pendix 2 in Lions, 1988a) to Schrödinger type equations and simplified equation
of isotropic Kirchhoff plate. This approach exploits microlocal analysis.

Datko (1991) and Datko and You (1991) studied the influence of small time
delays on stabilization.

Klamka (1998) studied the approximate controllability of semilinear infinite-
dimensional second-order dynamical systems with damping. The general theory
was applied to a nonlinear beam equation. The same author (Klamka, 1999) intro-
duced the notion ofapproximate positive controllabilityfor linear infinite-
dimensional dynamic systems, for which the controls are taken to be nonnegative.
The theory proposed was applied to one-dimensional heat equation.

Lasiecka (1988) investigated the problem of local uniform stability of hyper-
bolic and parabolic equations with nonlinearities appearing in the boundary condi-
tions (in feedback form).

Bashirov and Kerimov (1997) introduced the controllability notions for partially
observed stochastic systems and discussed their relation with complete (exact) and
approximate controllabilities. A class of ergodic control problems was investigated
in Camilli (1996).

For impulse control problems the reader is referred to Camilli and Falcone
(1999) and the references therein.

The presentation in several papers just briefly reviewed is rather abstract. The
main aim of our contribution is to review more practical results obtained in the last
decade. We focus on papers related to mechanical problems: elasticity,
thermoelasticity and thermoviscoelasticity. Heat equations have also been
discussed.

In a separate paper a comprehensive review related to a wide class of physical
and mechanical problems will be presented (Telega and Bielski, 2000). This class
will also comprise wave and wave-like equations, Maxwell’s equations, Stokes
and Navier-Stokes equations, KdV equation, fluid-structure systems, structures
(beams, membranes, plates and shells), junctions and asymptotic problems, includ-
ing homogenization.
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2. Linear elasticity

Lions (1988a, Chap. 4) applied the method HUM to solve the problem of exact con-
trollability of linear elastic bodies made of homogeneous and isotropic materials.
Both Dirichlet and Neumann boundary controls were examined. An extension to
homogeneous and anisotropic materials was studied by Telega and Bielski (1996).
Microperiodically inhomogeneous bodies were considered in Telega and Bielski
(1999). The same problem was later considered by Alabau and Komornik (1997)
for the domain� in R3 being a ball of radiusR whilst arbitrary bounded and
regular domains were assumed in Alabau and Komornik (1998).

In this section we shall present recent results on controllability and stabilization
of linear elasticity systems, including numerical realization of the HUM. Earlier
results have obviously been discussed in the papers presented below.

We observe that the available results are confined to geometrically linear prob-
lems (the theory of small displacements). Geometrically non-linear problems con-
cern only plates and shells, cf. Telega and Bielski (2000). Recent ideas due to
Russell (1997) and Renardy and Russell (1999), though not directly related to
the subject of this paper, are also worthy of mention. Russell (1997) introduced
the notion formation theory, which refers to the controlled modification of the
geometric configuration, orshapeof an elastic body by means of attached or em-
bedded actuators. According to Renardy and Russell (1999), the subject material
of formation theory concerns the relationships between the applied controls, the
actuator distribution and the resulting deformation of the structure. In the above
two papers only static, linear elastic problems were investigated. It seems that this
emerging theory may find applications in optimal design and bone remodelling. In
the last case one can envisage nonmechanical controls. After an extension to quasi-
static problems the formation theory may throw new light on the theory of adaptive
elasticity, cf. Telega and Lekszycki (2000).

2.1. TRANSMISSION PROBLEM

Laguese (1997) generalized a transmission problem considered by Lions (1988a,
Chap. 6) for two wave equations to the case of anisotropic elasticity. More pre-
cisely, following Lagnese (1997) we shall consider the exact Dirichlet boundary
controllability for such a problem.

Let �,�1 be bounded, open, connected sets inRn (in practicen = 1,2 or 3)
with smooth boundaries0 and01, respectively, such that̄�1 ⊂ �. We set�2 =
�\�̄1, 02 = ∂�2; obviously02 = 0 ∪ 01. This assumption on domains precludes
the case of elastic body made of two layers. Two linear elastic bodies are identified
with �̄1 and�̄2. Their elastic modulia(α)ijkl (α = 1,2; i, j, k, l = 1, ..., n) satisfy
the usual symmetry conditions

a
(α)
ijkl = a(α)jikl = a(α)klij , (2.1)
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and the following ellipticity condition

∃c0 > 0,∀E ∈ Ens , a
(α)
ijklEijEkl > c0|E|2. (2.2)

HereEns denotes the space of all real symmetricn× n matrices.
Lagnese (1997) considered also weaker assumptions ona

(α)
ijkl , where instead of

(2.1) we only have

a
(α)
ijkl = a(α)klij , α = 1,2; i, k = 1, . . . , m; j, l = 1, . . . , n.

However, this case is not interesting for the classical linear elasticity. The summa-
tion convention over repeated indices is used, unless otherwise stated.

Consider the followingproblem of transmission{
ü1i − a(1)ijklu1k,lj = 0 inQ1 = �1× (0, T ),
ü2i − a(2)ijklu2k,lj = 0, in Q2 = �2× (0, T ); (2.3)

u2 = v, on6 = 0 × (0, T ), (2.4)

u1 = u2, a
(1)
ijkl ekl(u1)nj = a(2)ijklekl(u2)nj , on61 = 01× (0, 0), (2.5)

uα(x,0) = u̇α(x,0) = 0, in �α. (2.6)

Heren = (ni) is the unit normal to01 pointing into�1 and

eij (u) = ( ∂ui
∂xj
+ ∂uj
∂xi

)/2. (2.7)

Obviously, in (2.4) the functionv is a control function. The density%α(α = 1,2)
does not appear in (2.3). It is either incorporated intoa(α) or one simply puts%α =
1. Such an assumption is unessential.

Let us define

Aα = inf
e∈Ens ,e 6=0

a
(2)
ijklEijEkl

EmpEmp
. (2.8)

The main result of Lagnese is summarized as follows.

THEOREM 1. Assume that01 is star-shaped with respect to some pointx0 ∈ �1

and let

0(x0) = {x ∈ 0|(x − x0) · n > 0}, 6(x0) = 0(x0)× (0, 0), (2.9)

R(x0) = max
x∈�̄2

|x − x0|, (2.10)
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wheren is the unit outer normal to0. Let

VT = {(u1(·, T ),u2(·, T ), u̇1(·, T ), u̇2(·, T )|v ∈ L2(6)n,

v= 0 on6\6(x0)}.
If

∀e∈ Ens , a(1)ijklEijEkl > a(2)ijklEijEkl, (2.11)

and if

T > T (x0) = 2
√

2R(x0)√
A2

, (2.12)

thenVT = H × V ∗ where

H = L2(�1)
n × L2(�2)

n,

V = {(ϕ1, ϕ2) ∈ H 1(�1)
n ×H 1(�2)

n|ϕ2|0 = 0, ϕ1|0! = ϕ2|01}. 2
The proof uses classical multipliers to derive a priori estimates and HUM.

REMARK 1. (i) Theorem 1 can be extended to the situation involving� and
p > 2 nested open setsω1, . . . , ωp with ω̄i ⊂ ωi+1, i = 1, . . . , p − 1, ωp =
�. Set:�1 = ω1,�i = ωi\ω̄i−1, i = 1, . . . , p; 0i = ∂ωi. The boundary
0i, i = 1, . . . , p − 1, is star-shaped with respect to a pointx0 ∈ �1.

(ii) It is not known whether the monotonicity condition (2.11) is necessary for
exact controllability in dimensionn > 2.

(iii) For isotropic materials the monotonicity condition (2.11) is satisfied provided
that

µ1 > µ2 andλ1 > λ2

whereµα , λα(α = 1,2) are the Lamé coefficients.
(iv) Nicaise (1993) studied the Dirichlet-Neumann boundary controllability of iso-

tropic homogeneous elastic bodies identified with�̄, where� is a polygonal
domain of the plane or a polyhedral domain of the space. Primarily, in Nicaise
(1992), the regularity of solutions was examined for bothn = 2 (corners) and
n = 3 (vertex and edge singularities). The results of Nicaise (1993) extend
those obtained earlier by Grisvard (1989) for the wave equation.

2.2. APPROXIMATE CONTROLLABILITY BY MEANS OF PLANAR BODY FORCES

Consider the following system of linear isotropic elasticity, cf. Zuazua (1996),

ü− µ1u− (λ+ µ)∇divu = fχO, in Q = �× (0, T ),
u = 0, on0 × (0, 0), (2.13)

u(0) = u0, u̇(0) = u1, in �,
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whereλ,µ denote the Lamé coefficients. HereO is an open and nonempty subset
of �. We assume thatf ∈ L2(Q)n(n = 2,3) is of the form

f = (f1, . . . , fn−1,0). (2.14)

Prior to the formulation of the approximate controllability result we have to intro-
duce indispensible notations. Let

T (�) = 2δn(�;O)√
µ

, (2.15)

the quantityδn being defined as follows. For any open subset�1 of �

δn(�;�1) := sup
x∈�\�1

inf
γ∈ξ(x;�1)

l(γ ), (2.16)

whereξ(x;�1) denotes the set of curves in� joining x and�̄1 andl(·) stands for
the length of the curve. We setδn(�; ∅) = ∞.

By �n−1 ⊂ Rn−1 and�1 ⊂ R we denote, respectively, the projections of� on
the hyperplanexn = 0 and on the axisOxn. Furthermore, byUn−1 ⊂ Rn−1 (resp.
U1 ⊂ R) we denote the union of the projections on the hyperplanexn = 0 (resp.,
on the axisOxn) of all those components of the boundary0 that can be written in
the formxn = h(x1, . . . , xn−1) with h of classC2 and such that

|∇′h(x1, . . . , xn−1)|2 6= λ+ 2µ

µ

or

1′h(x1, . . . , xn−1) 6= 0.

By∇′ and1′ we denote the gradient and Laplacian in the variables(x1, . . . , xn−1).
The approximate controllability result proved by Zuazua (1996) is formulated

as follows.

THEOREM 2. Let� satisfies the following four conditions:

(i) � is a piecewiseC2-bounded domain.
(ii) Some open and nonemptyC2 component of0 can be written in the form:
xn = h(x1, . . . , xn−1) with |∇′h|2 6= (λ+ 2µ)/µ or 1′h 6= 0 everywhere on
that component.

(iii) There exists a point of aC2 component of the boundary of� where the
tangent hyperplane to� exists, and it is parallel to the axisOxn.

(iv) Whenn = 3, either
(iv)1 an open subset of0 is contained in a plane of the formx3 = c
or

(iv)2 � is not symmetric with respect to a plane of the formx3 = c.
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Then, if

T > 2
δn(�;O)√

µ
+ T ∗(�),

system (2.13) is approximately controllable at time T under the constraint (2.14),
where

T ∗(�) = 2 min(
1√
µ
δn−1(�

n−1;Un−1)),
1√

λ+ 2µ
δ1(�

1;U1)).

More precisely, for all(u0,u1) and(u0
T , u

1
T ) in H 1

0 (�)
n×L2(�)n andε > 0 there

existsf ∈ L2(Q)n obeying (2.14) such that the solution of (2.13) satisfies

[‖u(T )− u0
T ‖2H1

0 (�
n)
+ ‖u̇(T )− u1

T ‖2L2(�n
]1/2 6 ε. 2

REMARK 2. (a) Without the constraint (2.14), exact controllability withL2(Q)n-
controls holds for a certain class ofO’s, cf. Lions (1988a). For instance, ifO is a
neighbourhood of the boundary of� the exact controllability holds withT (�) =
diam(�\O)/√µ.
(b) Zuazua (1996) constructed a two-dimensional domain for whichT ∗(�) > 0.
This author provided also two examples of noncontrollability.
(c) Under the constraint (2.14), the approximate controllability cannot be obtained
directly from Holmgren’s uniqueness theorem. Zuazua (1996) solved the problem
of uniqueness of the corresponding homogeneous (forward) system by reducing
the proof to uniqueness result for scalar wave equations.

2.3. STABILIZATION OF LINEAR ELASTIC BODIES

Earlier results on boundary stabilization of three-dimensional linear elastodynamic
system are due to Lagnese (1983). The same author studied also the case of plane
strain (two-dimensional elasticity), cf. Lagnese (1991). In both cases the elastic
bodies are made of homogeneous isotropic materials.

The aim of the present section is to present the results obtained afterwards by
other authors. The papers by Lagnese (1983, 1991), however, largely influenced on
the developments which followed.

2.3.1. Asymptotic Stability of Isotropic Bodies with Internal Damping

Aassila (1998a) extended the approach used by him for the damped wave equation
to the case of homogeneous isotropic geometrically linear elastic bodies, cf. Aassila
(1998b).
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Consider the following elasticity system with internal damping

ü− µ1u− (λ+ µ)∇u+G(u̇) = 0, in �× R+,
u = 0, on00× R+,
µ∂u
∂n + (λ+ µ)(div u)n+ g1u = 0, on01× R+,

u(0) = u0, u̇(0) = u1, in �.

(2.17)

Here� is a bounded open domain inRn having a boundary0 of classC2, {00, 01}
is a partition of0 such that0̄0 ∩ 0̄1 = ∅ andg1 : 01 → R+ is a continuously
differentiable function.

Each component of the vectorG(u̇) is specified byg(u̇). The functiong satisfies
the following conditions:

(H1) g is an increasing function of classC1,
(H2) zg(z) > 0 for all z 6= 0,
(H3) there exists a numberq > 2 satisfying(n − 2)q 6 2n and two positive

constantsc1, c2 such that

c1|z| 6 |g(z)| 6 c2|z|q−2 for all |z| > 1

We observe that no growth condition at the origin is imposed ong and it suffices to
assume that� is of finite measure (not necessarily bounded). The assumptions
imposed ong preclude the possibility of construction of a standard Lyapunov
function, which played an important role in the study performed by Lagnese (1983,
1991).

Using the standard nonlinear semigroup theory we conclude that for any given
(u0,u1) ∈ H 1

00
(�)n × L2(�)n there exists a uniquemild (weak) solutionu ∈

C(R+,H 1(�)n) ∩ C1(R+, L2(�)n) and the linear mapping(u0,u1) → u is con-
tinuous with respect to these topologies. The spaceH 1

00
is defined by

H 1
00
(�) = {u ∈ H 1(�)|u = 0 on00}. (2.18)

If u0 ∈ (H 2(�) ∩H 1
00
(�))n,u1 ∈ H 1

00
(�)n, and

µ
∂u0

∂n
+ (λ+ µ)(divu0)n+ g1u0 = 0 on01, g(u

1) ∈ L2(�).

Then we have the following regularity property

u ∈ C(R+,H 2(�)n) ∩ C1(R+,H 1(�)n) ∩ C2(R+, L2(�)n).

In this case we say thatu is astrong solution.
The energy of the solution is defined by

E(t) = 1

2

∫
�

(|u̇|2+ µ|∇u|2+ (λ+ µ)(divu)2
)
dx + 1

2

∫
01

g1(x)|u|2d0.
(2.19)
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If u is a strong solution, standard calculation yields, cf. Komornik (1994b)

E(S)− E(T ) =
∫ T

S

∫
�

u̇ ·G(u̇)dxdt (2.20)

for all 06 S < T < +∞. The last identity remains valid for all mild solutions by
a density argument. By (H2) we conclude thatE(t) is non-increasing.

The strong asymptotic stability result is formulated as follows.

THEOREM 3. For every solution of the system (2.17) we have

E(t)→ 0 as t →+∞. 2
REMARK 3. Caution is needed when reading Aassila’s paper (1998a) since in
his Eq. (1.1) the damping term is a function with values inR3 and not inR+.
Consequently, one can consider more general damping by assuming that each
component ofG is not necessarily the same.

2.3.2. Boundary Stabilization of Isotropic and Anisotropic Linear Elastic Bodies

Komornik (1994a) and Alabau and Komornik (1998) devised a constructive method
applicable to boundary stabilization problems primarily studied by Lagnese (1983,
1991). More precisely, Komornik (1994a) studiedisotropic linear elastic bodies
whilst Alabau and Komornik (1998) investigatedanisotropicbodies. In both cases
the bodies are made of homogeneous materials. It is thus sufficient to present the
results contained in Alabau and Komornik (1998). These authors applied suitable
dissipative boundary feedbacks. A nonlinear boundary feedback was applied by
Martinez (1999). The last author, however, considered linear elastic bodies made
of materials with only cubic symmetry.

Consider the following system, cf. Alabau and Komornik (1998),

ü− divσ = 0 in �× R+,
u = 0, on00× R+,
σn+ Au+ Bu̇ = 0, on01× R+,
u(0) = u0, u̇(0) = u1, in �,

(2.21)

whereσ = (σij ), i, j = 1, . . . , n, is the stress tensor defined by

σij = aijklekl(u). (2.22)

The strain tensor is given by (2.7) and the elastic moduliaijkl satisfy (2.1) and
(2.2). In Eq. (2.21)3, A,B are given nonnegative coefficients, for simplicity. One
can, however, easily extend the result which follows to the case whereA andB are
nonnegative functions of classC1 on01.

The energy of the solution of (2.21) is given by

E(t) = 1

2

∫
�

(|u̇|2+ σij eij (u))dx + 1

2

∫
01

A|u|2d0 (2.23)
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and is a nonincreasing function oft ∈ R+.
Geometric assumptions are rather restrictive: it is assumed that

� = �1\�̄0, (2.24)

where�1 is an open ball, say�1 = B(x0, R),�0 is a star-shaped domain with
respect tox0 whose closure belongs to�1, and

00 = ∂�0, 01 = ∂�1. (2.25)

The case�0 = ∅ is not excluded. The following theorem was proved by Alabau
and Komornik (1998).

THEOREM 4. Let the elasticity tensor(aijkl) satisfy (2.1), (2.2), and let�,00,
and01 be defined by (2.24), (2.25). Given two positive constants A and B with A
< c0/(4R), there exists a positive numberω such that all (weak) solutions of (2.21)
satisfy the energy estimate

E(t) 6 E(0)e1−ωt , (2.26)

for all t > 0..
If 0 + 0 6= ∅, then the result holds also forA = 0.

We recall thatx0 ∈ Rn is arbitrary and fixed, moreover

R = sup{|x − x0|, x ∈ �}.
REMARK 4. (i) The proof of the last theorem is based on a Lyapunov-type method
and a new identity which allows to estimate certain boundary integrals.
(ii) The proof can be adapted to domains such that�1 is closeto a ball.
(iii) The proof of Th. 4 provides an explicit form ofω which involves a constant
depending onA andB but not on the choice of the initial data.
(iv) Applying the approach developed in Komornik (1997), Alabau and Komornik
(1998) formulated also a general theorem allowing to construct boundary feedback
for observable systems which lead to arbitrarily large decay rates. The second the-
orem applies to all bounded domains of classC2, choosing, for instance,00 = ∅
and01 = 0.
(v) Liu (1998b, Th. 2.2) improved the result due to Alabau and Komornik (1998)
concerning isotropic bodies: the domain�may be star-shaped and the assumption
on the function A(x) in (2.21)3 can really be weakened, as conjectured in the
second paper.
(vi) Tcheugoué Tebou (1996) studied the stabilization problem for the system
(2.21) in the two-dimensional case. The material isisotropic. The following the-
orem was proved.

THEOREM 5. Letk ∈ L∞(01) satisfy

k > 1

R
a.e. on01, |km| 6 1 a.e. on01.
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Choose the functions A and B by

A = 2

3
µ(m · n)k2, B = √µ(m · n)k.

Then we have

E(t) 6 [exp(1−√µt/3R)]E(0) ∀t > 3R/
√
µ,

whereµ is the Lamé constant. 2
We recall that

R = sup{|m(x)|, x ∈ �},
01 = {x ∈ 0|m(x) · n(x) > 0}, 00 = 0\01.

REMARK 5. Martinez (1999) investigated a class of nonlinear boundary feedback
laws for bodies made of materials with cubic symmetry, cf. Chernykh (1988).
Such materials are characterized bythree independent coefficients. We recall that
isotropic materials are described by only two coefficients (the Lamé constants).
The boundary feedback law is given by

σn+ au+ bg(u̇) = 0 on01× R+, (2.27)

wherea, b : 01 → R+ are two continuously differentiable functions whilstgi:
R→ R is a continuous nondecreasing function such that

∀z ∈ R, |gi(z)| 6 1+ c|z|, (2.28)

for some positive constantc. Martinez (1999) proved a uniform stabilization the-
orem and derived rather precise decay estimates.

REMARK 6. Horn (1998) established an exponential (uniform) decay of solution
for the elastodynamic system of isotropic elasticity. Only the velocity feedback is
acting through the boundary:

σ (u)n = −u̇ on01× R+.
In our opinion, one should write:

σ (u)n = −αu̇, α > 0, on01× R+.
The constantsα is not dimensionless; particularly one can takeα = 1 (in appro-
priate units, depending on the units of the velocityu̇ and tractionsσ (u)n).

The uniform stability theorem of Horn (1998) does not require the usual strong
geometric assumption on01. Under the usual assumption of smooth boundary of
�, it suffices to impose the following standard condition:

m(x) · n 6 0 on00.
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The uniform stability theorem is based on the multiplier method and sharp trace
estimates for the tangential derivative of the displacements on the boundary as well
as on the unique continuation results for the corresponding static system.

2.4. NUMERICAL APPROACH TO EXACT BOUNDARY CONTROLLABILITY

Asch and Lebeau (1996) elaborated a numerical approach to solve the exact bound-
ary controllability for the wave equation. Such an approach, based on the conjugate
gradient method, was extended by Asch and Vai (1998) to two dimensionaliso-
tropic elasticity. Here we shall present the main idea in a more general context
of anisotropic elasticity, cf. comments given at the beginning of Section 2. The
conjugate gradient method can readily be extended to three-dimensional problems.

Let� be a bounded, sufficiently regular domain ofR2. Consider the following
system of dynamic elasticity

ü− divσσσ (u) = 0, in Q = �× (0, T ), (2.29)

u(xα,0) = u0(x), u̇(xα,0) = u1(x), in �, (2.30)

u = v, on6 = 0 × (0, T ) (2.31)

or

u =
{

v on60 = 00 × (0, T ),
0 on6\60.

(2.32)

As usual, we want to find a controlv such that ifu is a solution to (2.29), (2.30)
and (2.31) or (2.32), then

u(xα, T ) = u̇(xα,0) = 0 (2.33)

Herex = (xα), α = 1,2, and

σαβ(u) = aαβλµeλµ(u). (2.34)

The elasticity tensoraαβλµ satisfies (2.1), (2.2), whilsteαβ(u) is given by (2.7).
Let us pass to the characterization of the controlv. We set

V = H 1
0 (�)

2× L2(�)2, V ′ = H−1(�)2× L2(�)2. (2.35)

Let (f0, f1) ∈ V . First, we solve the following system

8̈88 − divσσσ (888) = 0 in Q,

888(x,0) = f0(x), 8̇88(x,0) = 8881(x), in �, (2.36)

888 = 0 on6.
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Next, we solve the backward problem

9̈99 − divσ (999) = 0, in Q,
999(x, T ) = 0, 9̇99(x, T ) = 0, in �,

999 =
{
σσσ (888)n on60,

0 on6\60.

(2.37)

Finally, we introduce the linear operator3

3 : V → V ′
(fo, f1)→ (9̇99(x,0),−999(x,0)) (2.38)

It is known that forT sufficiently large,3 is an isomorphism ofV on V ′, cf.
Telega and Bielski (1996), Alabau and Komornik (1998). In the case of isotropy,
T > 2√

µ
R(x0) wherex0 ∈ R2 and

R(x0) = max
x∈�̄
|x − x0|,

00 = 0(x0) = {x ∈ 0|(x − x0) · n(x) > 0}
Thus the method HUM means that we have to find the unique solution(f0, f1) ∈ V
such that

3(f0, f1) = (999(x,0),−999(x,0)).
The bilinear form〈3(·), (·)〉 is symmetric and continuous onV × V . Moreover,
under the assumptions ensuring applicability of the method HUM this bilinear form
is V -elliptic. Consequently, the Lax-Milgram lemma applies, cf. Yosida (1978)
and we can use a conjugate gradient algorithm to solve the following variational
problem:

| find (f0, f1) ∈ V such that

〈3(f0, f1), (f̃
0
, f̃

1
)〉 = 〈9̇99(x,0),−999(x,0), (f̃0

, f̃
1
)〉 ∀(f̃0

, f̃
1
) ∈ V

Conjugate gradient algorithm
The scalar product ofV is defined by

(U,W)V =
∫
�

(∇u0 · ∇w0+ u1 · w1)dx,

whereU = (u0,u1),W= (w0,w1).
Step 0. Initialization

• let (f0
0, f

1
0) = ((f 0,1

0 ), f
0,2
0 ), (f

1,1
0 , f

1,2
0 )) ∈ V ;

• let (g0
0,g

1
0) ∈ V ;
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• solve the equation in80:

8̈88
0− divσσσ (8880) = 0, in Q,

8880(x,0) = f0
0(x), 8̇88(x,0) = f1

0(x), in �, (2.39)

8880 = 0, on6.

• solve the backward equation

9̈99
0− divσσσ (9990) = 0 in Q,

9990(x, T ) = 0, 9̇99
0
(x, T ) = 0, in �,

9990 =
{
σσσ (9990)n on60,

0 on6\60;
(2.40)

• solve

−1g0
0 = 9̇990

(x,0)− u1, in �,
g0

0 = 0, on0,
(2.41)

and

g1
0 = u0− 9990(x,0) in �,

• if (g0
0,g

1
0) = 0 or is small, put(f0, f1) = (f0

0, f
1
0) and stop the algorithm; if not,

establish the first direction of descent:(w0
0,w

1
0) = (g0

0,g
1
0).

Step 1.Descent. Fork > 0, suppose that(f0
k, f

1
k), (g

0
k,g

1
k), and(w0

k,w
1
k) are known;

the new iterates(f0
k+1, f

1
k+1), (g

0
k+1,g

1
k+1, and(w0

k+1,w
1
k+1), are calculated as fol-

lows:

• solve the equation in̄888k:

¨̄888k − divσσσ (8̄88k) = 0 in Q,

8̄88k(x,0) = w0
k(x),

˙̄888k(x,0) = w1
k(x), in �, (2.42)

8̄88k = 0, on6;

• solve the backward equation

¨̄999k − divσσσ (9̄99k) = 0, in Q,
9̄99k(x, T ) = 0, 9̄99k(x, T ) = 0, in �

9̄99k =
{
σσσ ( ˙̄999k)n on60,

0 on6\60;
(2.43)
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• solve

−1ḡ0
k = ˙̄999k(x,0), in �,

ḡ0
k = 0, on0,

(2.44)

and

ḡ1
k = −9̄99k(x,0) in �;

• calculate

%k = 62
α=1

∫
�
(|∇g0,α

k |2+ |g1,α
k |2)dx∑2

α=1�
(∇ḡ0,α

k · ∇w0,α
k + ḡ1,α

k w
1,α
k )dx

with no summation overk.
• Update all quantities:

(f0
k+1, f

1
k+1) = (f0

k, f
1
k)− %k(w0

k,w
1
k),

888k+1 = 888k − %k8̄88k,

999k+1 = 999k − %k9̄99k,

(g0
k+1,g

1
k+1) = (g0

k,g
1
k)− %k(ḡ0

k, ḡ
1
k).

(2.45)

Obviously, in Eq. (2.45) there is no summation overk.
Step 2.Convergence test and construction of new descent direction:

• if (g0
k+1,g

1
k+1) = 0 or (g0

k+1,g
1
k+1) is small, set(f0, f1) = (f0

k+1, f
1
k+1), 888 =

888k+1, 999 = 999k+1 and stop the algorithm;
• if not, establish the new direction of search(w0

k+1,w
1
k+1):

γk = ‖(g
0
k+1,g

1
k+1)‖2

‖(g0
k,g

1
k)‖2

=
∑2

α=1

∫
�
(|∇g0,α

k+1|2+ |g1,α
k+1|2)dx∑2

α=1

∫
�
(|∇g0,α

k |2+ |g1,α
k |2)dx

(w0
k+1,w

1
k+1) = (g0

k+1,g
1
k+1)+ γk(w0

k,w
1
k), (2.46)

and go to Step 1 with k= k + 1; the summation convention does not apply to the
last step.

Asch and Vai (1998) performed also a discretization of the presented algorithm.
It was assumed that� is a square of length 1. The approach used is similar to the
one developed by Asch and Lebeau (1996) for the wave equation. Various numer-
ical aspects related to the problem studied were carefully discussed. For instance,
theenergetic cost vectorandenergetic cost factorare criterions for the evaluation
of the cost of the control and the energetic cost. The results of numerical calcula-
tions show the propagation of elastic waves without the control on the boundary
and with the boundary control for several cases of control.
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3. Heat Equations

The comprehensive papers by Glowinski and Lions (1994, 1996) constitute a good
introduction to approximate controllability of diffusion equation and relevant nu-
merical methods, including numerical tests. In this section we review recent devel-
opments and topics not discussed by these authors.

3.1.

Fabre et al. (1993) considered the approximate controllability of the following
system

u̇−1u+ au = vχO, in Q = �× (0, T ),
u = 0, on6 = 0 × (0, T ), (3.1)

u(0) = 0 in�.

Here� ⊂ Rn, n > 1, is an open and bounded set withC2 boundary andO
an open and nonempty subset of�. As previously,v = v(x, t) represents the
control function. We observe that we can consider the initial conditionu(0) = u0..
However, since the problem is linear it suffices to treat the caseu0 = 0.

System (3.1) is said to beLp-approximately controllable inL2(�) at timeT >
0 if the following holds:
“the set of reachable states at timeT > 0,

S(T ) = {u(x, T )|u is solution of (3.1) withLp(O× (0, T ))}, (3.2)

is dense inL2(�)”; here 1< p 6 ∞. Obviously, this definition is equivalent to
the following statement: for everyε > 0 and for everyuT ∈ L2(�) there exists
v ∈ LP (�) such that‖u(T )− uT ‖L2(�) 6 ε.

By a standard approach we prove that the problem of the approximate con-
trollability reduces to the following uniqueness property: If8 satisfies the adjoint
system:

−8̇−18+ a8 = 0, in Q,

8 = 0, on6, (3.3)

8(T ) = 80 ∈ L2(�),

then8 = 0 in O× (0, T ) implies8 = 0 in � × (0, T ). We recall that since the
velocity of heat propagation is infinite,T may be arbitrary small.

Let us pass to a characterization of the control which minimizes theLp(O ×
(0, T ))-norm and particularly whenp = +∞. To this end we recall thatg ∈
sgn(s) if g(x, t) = s(x, t)/|s(x, t)| if s(x, t) 6= 0 and|g(x, t)| 6 1 on the set
Q1 = {(x, t)|s(x, t) = 0}. By sgn0(s) we denote the element ofsgn(s) which is
equal to 0 onQ1. We will say that a functionv is quasi bang-bang ifv(x, t) =
λg(x, t) whereλ is a constant andg ∈ sgn(s) for some functions.
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We set

U
p

ad= {v ∈ Lp(O× (0, T ))|the solution of (3.1) satisfies

‖u(T )− uT ‖L2(�) 6 ε}.
Fabre et al. (1993) proved the following theorem.

THEOREM 6. For 26 p 6 +∞, we have

min{1
2
‖v‖2Lp(O×(0,T ))|v ∈ Up

ad} = −min{Jp(80)|80 ∈ L2(�)}, (3.4)

where

Jp(8
0) = 1

2

(∫
O×(0,T )

|8(x, t)|p′dxdt
)2/p′

+ ε‖80‖L2(�) −
∫
�

u180dx,

(3.5)

and8 is the solution of (3.3) with8(T ) = 80; moreover1
p
+ 1

p
= 1.

Also, if vp denotes the control which minimizes theLp-norm overUp

ad then
{vp}p<+∞ is bounded inL2(O× (0, T )) and if v̄ is a limit point of{vp}p<+∞ when
p tends to+∞ then

v̄ ∈ U∞ad and‖v̄‖L∞(O×(0,T )) = min{‖v‖L∞(O×(0,T ))|v ∈ U∞ad},
v̄ is quasi bang-bang.

REMARK 7. (i) If p < +∞, there exists a unique control minimizing theLp-
norm over admissible controls; forp = +∞ the uniqueness result is not available.
(ii) If p < +∞, the problem min{Jp(80)|80 ∈ L2(�)} is the dual problem of
min{(1/2‖v‖2

Lp(O×(0,T ))|v ∈ Up

ad}, in the sense of Rockafellar’s theory of duality
presented in Ekeland and Temam (1976).

If p = +∞, the problem min{J∞(80)|80 ∈ L2(�)} is a primal problem; the
dual problem means evaluating

min{1/2‖v‖L∞(O×(0,T ))|v ∈ U∞ad }

3.2.

Lebeau and Robbiano (1995) solved the problem of exact internal controllability
of the linear heat equation posed on a compact and connected Riemann manifold
of classC∞. This interesting result was inspired by the paper of Russell (1973)
who proved that an exact controllability result for the wave equation implies the
exact controllability of the heat equation. Technical details of proofs for this par-
ticular case were carefully elaborated. The above authors exploited estimates on
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the elliptic equation∂
2

∂t2
+1, deduced from Carleman’s estimates. We observe that

in the parabolic case there is no geometric constraint on the control region.

3.3.

Ji and Lasiecka (1998) studied the following abstract model:

u̇ = Au+ Bv in [D(A∗)]′,
u(0) = u0 ∈ H,
y = Cu,

where[D(A∗]′ is the dual ofD(A∗) with respect to theH -topology,A is a gen-
erator of an analytic semigroup defined on a Hilbert spaceH , B is the control
operator, andC is the observation. Both control and observation are modelled by
fully unbounded operators. Under certain hypotheses onA, B andC there exists
an infinite-dimensional “compensator”z, the solution of

ż = (A+ BF −KC)z +KCu,
such that the feedback control

v = Fz
exponentially stabilizes the abstract model considered. The linear operatorsF , K
appear in the stabilizability-detectability assumption.

The study was motivated by recent applications of “smart material” technology
in the context of control and stabilization. Smart actuators and sensors such as
piezoceramic patches, piezoelectric devices are modelled by unbounded operators,
cf. Banks et al. (1996).

The main result of Ji and Lasiecka (1998) provides a construction of the par-
tially observed stabilizing feedback. Elaboration of approximating schemes re-
quires many assumptions on approximation of operatorsA, B, C, F andK.

The general approach to partially observed control systems just sketched was
used by Ji and Lasiecka (1998) to the following heat equation with boundary
control and boundary observation:

u̇ = 1u+ c2u, in �× R+,
u = v, on0 × R+,

y = ∂u
∂n
, in 0 × R+,

u(0) = u0, in �.

The bounded domain� ⊂ Rn is either smooth or convex.
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3.4.

Fabre et al. (1995) examined the problem ofapproximate controllability of the
semilinear heat equationwhen the control acts on any open and nonempty subset
of� ⊂ Rn, n > 1, or on a part of the boundary. The assumptions on� andO have
been specified in Sec. 3.1. Letf be a real and globally Lipschitz function such that

∃c > 0, ∃d > 0, |f (z)| 6 c|z| + d. (3.6)

Internal controllability
Consider now the following semilinear heat equation

u̇−1u+ f (u) = gχO, in Q,

u = 0, on6, (3.7)

u(0) = u0, in �,

whereg represents the control function andχO is the characteristic function ofO,
the set where controls are supported.

The definition of approximate controllability is similar to the one given in Sec.
3.1; now, however,u is the solution of (3.7) andg ∈ Lp(Q). Furthermore, system
(3.7) is approximately controllable inC0(�) (the space of uniformly continuous
functions vanishing on0 = ∂�, endowed with the norm of the supremum) at time
T > 0 if for every u0 ∈ C0(�) the set

S(t) = {u(x, T )|u is the solution of (3.7) withg ∈ L∞(Q)},
is dense inC0(�).

Equivalently we may formulate these definitions as follows: For everyuT ∈
Lp(�) (respectivelyC0(�)) and for everyε > 0, there exists a controlg ∈ Lp(Q)
(respectivelyL∞(Q)) such that the solutionu of (3.7) satisfies‖u(T )−uT ‖Lp(�) 6
ε (respectively‖u(T )− uT ‖Co(�)6ε).

The internal approximate controllability result is formulated as follows.

THEOREM 7. Under the above assumptions onf , system (3.7) is approximately
controllable inLp(�) for 16 p <∞ and inC0(�) at any timeT > 0. Moreover,
for everyu1 ∈ Lp(�) (respectivelyC0(�)) and for everyε > 0, we can find a
control g ∈ Lp(Q) (respectivelyL∞(Q)) of the form:

g(x, t) ∈
(∫

O×(0,T )
|ϕ(x, t)|dxdt

)
sgn(ϕ)χO×(0,T ),

whereϕ is the solution of a suitable heat equation, such that‖u(T )−uT ‖Lp(�) 6 ε
(respectively‖u(T )− uT ‖C0(�) 6 ε).

The proof combines variational approach to the linear equation with fixed point
theorem (Kakutani’s theorem).
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REMARK 8. (i) Controls of the form appearing in the last theorem are quasi bang-
bang controls, cf. Sec. 3.1.
(ii) Fabre et al. (1995) considered also approximate boundary controllability in
Lp(�) for any 16 p <∞ and arbitraryT > 0. In this case the system studied is

u̇−1u+ f (u) = 0, in Q,

u = g1χ61, on6, (3.8)

u(0) = u0,

whereg1 = g1(σ, t) represents the control function,σ is the boundary variable and
χ61 is the characteristic function of61 = 01 × (0, T ), the set where the controls
are supported.

System (3.8) is said to be approximately controllable inLp(�) at timeT > 0
if the following holds: For everyu0 ∈ Lp(�) the set of reachable states at time
T > 0

Sb(T ) = {u(x, T )|u is the solution of (3.8) withg1 ∈ L∞(6)}
is dense inLp(�).

3.5.

Zuazua (1997) introduced the notion offinite (or finite dimensional)null control-
lability for the semilinear heat equation. This notion is introduced as follows: Given
an initial datau0 in L2(�) and a control timeT > 0, find a controlg ∈ L2(Q)

such that the solution of (3.7) satisfies

5Hfinu(T ) = 0.

HereHfin is a finite dimensional subspace ofL2(�) and5Hfin denotes the ortho-
gonal projection fromL2(�) intoHfin.

It seems that this notion of controllability is of interest from a computational
point of view, since in practice one can only test numerically the reachability of a
finite number of constraints.

The functionf in (3.7) is of classC1 and f (0) = 0. The control function
g = g(x, t) is assumed to be inL2(Q) and u0 in L2(�). Obviously, different
functional settings are possible. Under appropriate growth condition onf and if

‖u0‖L2(�) 6 ε, (3.9)

then the solution of (3.7) satisfies (3.9);ε depends onHfin, T andO. This statement
characterizes the local null controllability.

If f is globally Lipschitz, the following controllability result holds.
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THEOREM 8. For anyT > 0, O open non-empty subset of�, Hfin finite dimen-
sional subspace ofL2(�), u0, uT ∈ L2(�), and ε > 0, there existsg ∈ L2(Q)

such that the solutionu of (3.7) satisfies

‖u(T )− uT ‖L2(�) 6 ε,

and

5Hfin(u(T )) = 5Hfin(uT ).

REMARK 9. (i) Theorem 3.3 implies that the approximate control driving the
initial datau0 to the ballB(uT , ε) of L2(�) can be chosen so that the final state
satisfies simultaneously a finite number of exact constraints.
(ii) Similar results can be obtained for the problem of boundary control.

REMARK 10. Khapalov (1999d) consideredfinite exact controllabilityand ap-
proximate controllability for theone-dimensional semilinearheat equation inQ =
(0,1)× (0, T )

u̇ = uxx + f (u)+ v(t)χ(l1,l2)(x), v ∈ L2(0, T ),
u(0, t) = u(1, t) = 0, u(x,0) = u0 ∈ L2(0,1),

(3.10)

where(l1, l2) ⊂ (0,1).
The controllability results were proved under the assumption thatl2 ± l1 are

irrational numbers. Since the problems is one-dimensional in space, the proofs
combine author’s asymptotic method (see Khapalov, 1995) with the Riesz basis
approach relevant to the linear boundary problems with pointwise controls.

3.6.

Khapalov (1995) consideredapproximate controllabilityof the following nonlinear
equation

u̇ = 1u− a(x, t, u,∇u) + (Bv)(x, t), in Q,

u = 0, on6, (3.11)

u(0) = u0 ∈ L2(�).

Here� is a bounded domain ofRn, n > 1; a(x, t, u, p) is measurable inx, t, u, p
with respect to Lebesgue measure and continuous inu, p for almost all(x, t) ∈
Q;B is a linear operator defined on a control space with range inL2(Q). One- and
two-dimensional cases with specific choices ofB were also discussed.

In subsequent papers, Khapalov (1998, 1999a, 1999b) studied the case where

(Bv)(x, t) = v(x, t)yχO(x). (3.12)
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3.7.

Liu and Williams (1997) and Khapalov (1999c) studied the problem of exact con-
trollability of system (3.7). The former authors proved exact controllability under
the assumption that the functionf (t, u) appearing in (3.7)1 is continuous inT on
[0, T ] and globally Lipschitz continuous inu onR, that is there exists a positive
constantk such that

|f (t, z1)− f (t, z2)| 6 k|z1− z2|, for all z1, z2 ∈ R. (3.13)

Under this assumption we have the following exact controllability result.

THEOREM 9. There exists aT0 > 0 such that for0 < T 6 T0 system (3.7) is
exactly controllable inL2(�) at timeT , that is, for anyu0, uT ∈ L2(�) there
existsg(x, t) ∈ L2(0, T ;H−1(�)) such that the solution of (3.7) withO = �

satisfies

u(x, T ) = uT , in �. (3.14)

Furthermore, for any fixedu0 ∈ L2(�), the control function

g(x, t;u0, uT ) : L2(�)→ L2(0, T ;H−1(�))

is Lipschitz continuous.

The proof is based on a construction of nonlinear monotone operator.

REMARK 11. Liu and Williams (1997) claim that we cannot expect the exact
internal controllability for the semilinear heat equation ifO is a proper subset of
�. The results of Khapalov (1999c) do not confirm such a conjecture. This author
showed that under the assumption of continuity off (u) and assuming appropri-
ate superlinear growth at infinity of this function, the exact null-controllability in
L2(�) of system (3.7) is possible. More precisely, in Khapalov’s approach the set
O depends ont , i.e.,

O(·) = {(x, t)|x ∈ O(t) ⊂ �, t ∈ (0, T )} ⊂ Q.
Thus in (3.7) we haveχO(t). The measure ofO(t) can be chosenarbitrarily small
at all timest . The notion of exact null-controllability used by Khapalov (1999c) is
a generalization of the usual one.

3.8.

Bodart and Fabre (1994) considered a semilinear heat equation with partially known
initial and boundary conditions. The insensitizing problem consists in finding a
control function such that some functional of the state is locally insensitive to the
perturbations of these initial and boundary conditions. The insensitivity conditions
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are equivalent to a particular nonlinear exact controllability problem for parabolic
equations. Since, as we already know, exact controllability is difficult to achieve, it
is thus reasonable to introduce the concept ofapproximately insensitizing control,
and then to solve a nonlinear approximate controllability problem of special type.

4. Thermal problems in deformable solids

In the previous section coupling between heat propagation and deformability has
not been taken into account. The aim of this section is to discuss such coupled
problems. Lions (1988b, Chapter 3) studied the controllability of a simplified sys-
tem of thermoelasticity by the RHUM method (Reverse or Reachability Hilbert
Uniqueness Method). The approximate partial controllability of the same coupled
system was investigated by Glowinski and Lions (1996, Section 7), where also an
optimal control problem and its dual were studied.

4.1. CONTROLLABILITY

Consider an isotropic and homogeneous thermoelastic body occupying an open and
bounded set� ⊂ Rn(n > 1)with boundary0 = ∂� of classC2. The displacement
vector is denoted byu = (ui(x, t)) and the temperature byθ = θ(x, t).

Zuazua (1995) considered the following thermoelastic system in the presence
of the controlg ∈ L2(Q)n

ü− µ1u− (λ+ µ)∇divu+ α∇θ = gχO, in Q,
θ̇ −1θ + βdivu̇ = 0, in Q,
u = 0, θ = 0, on6,
u(0) = u0, u̇(0) = u1, θ(0) = θ0, on�,

(4.1)

whereµ, λ denote Lamés constants andα, β > 0 are coupling parameters; the set
O is the same as in the previous section. System (4.1) possesses a unique solution
(u, u̇, θ) ∈ C([0, T ],H), where

H = H 1
0 (�)

n × L2(�)n × L2(�)n. (4.2)

The irreversibility and the regularizing effect of the heat equation satisfied by the
temperature imply that the exact controllability property may not hold. Hence, it
is natural to formulate the followingexact-approximate controllabilityproblem:
Given (u0,u1, θ0) and (uT ,u1

T , θ
0
T ) and ε > 0, find a controlg such that the

solution of (4.1) satisfies

u(T ) = u0
T , u̇(T ) = u1

T ,‖θ(T )− θ0
T ‖L2(�) 6 ε.

Obviously, the exact controllability would occur ifθ(T ) = θ0
T .

The main result of Zuazua (1995) is formulated as follows.
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THEOREM 10. Let O be a neighborhood of the boundary0 = ∂�, i.e., O =
�∩O1 whereO1 is a neighborhood of0 inRn. Suppose thatT > diam(�\O/√µ.
Then, system (4.1) is exact-approximately controllable in timeT .

The proof combines the observability inequality for the adjoint system of ther-
moelasticity, multiplier techniques, compactness arguments, Holmgren’s Unique-
ness Theorem and the result due to Henry et al. (1993) on decoupling of the
thermoelasticity system.

REMARK 12. As we know, it is not natural to expect exact controllability results
for the system of thermoelasticity. However, we can expect to be able to reach
anysufficiently smoothfinal state, for instance the null controllability state is such
a state. Lebeau and Zuazua (1998) solved this problem for simplified as well as
complete system of thermoelasticity in a compact, connected C∞ Riemannian man-
ifolds, thus generalizing the results due to Lebeau and Robbiano (1995), cf. also
Sec. 3. of our paper.

REMARK 13. The problem of partial exact (mechanical) boundary controllability
was studied by Liu (1998b). The boundary condition on01 ⊂ 0 is as follows

µ
∂u
∂n
+ (λ+ µ)(div u)n+ a(x)(m · n)u = g2, on01× (0, T ),

whereg= −(m · n)u is a control. The proof of the relevant Th. 2.3 of Liu (1998b)
should be read with “Correction”; this proof requires a smallness condition onα, β

(the coupling parameters).

4.2. DECAY OF SOLUTIONS

Aassila (1998c) and Ouazza (1997) studied decay rates of solutions to the following
simplified system of thermoelasticity with nonlinear damping

ü−1u+ α∇θ + g(u̇) = 0, in �× R+,
θ̇ − k1θ + βdiv u̇ = 0 in�× R+,
u = 0, θ = 0 on 0 × R+,
u(0) = u0, u̇(0) = u1, θ(0) = θ0, in �.

(4.3)

The energy of the system is defined as follows

E(t) = 1

2

∫
�

(|u̇(t)|2 + |∇u(t)|2+ |θ(t)|2)dx. (4.4)

Ouazza (1997) proved that ifg is globally a Lipschitz function such thatg(0) =
0 and if there exists a constantc1 > 0 such that for eachz ∈ Rn,

z · g(z) > c1|z|2, (4.5)
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then for each weak solution of (4.3)

E(t) 6 E(0)exp(1− ωt), (4.6)

whereω > 0. If g is such as previously and (4.5) holds for|z| > 1, and

z · g(z) > c2|z|p+1,

for |z| 6 1, then

E(t) 6 c3t
−2/(p−1), t > 0, (4.7)

wherec3 > 0 depends onE(0).
Under weaker assumptions on� andg Aassila (1998c) proved strong stability,

i.e.,E(t)→ 0 ast →∞ for every weak solution of (4.3).

4.2.1.

By using the methods of geometric optics (Ralston, 1982) combined with the de-
coupling method due to Henry et al. (1993), Lebeau and Zuazua (1999) studied the
decay of solutions to the following system of thermoelasticity in a bounded domain
� ⊂ Rn, n = 2 or 3, of classC∞

ü− µ1u− (λ+ µ)∇divu+ α∇θ = 0 in �× R+,
θ̇ −1θ + βdivu̇ = 0 on�× R+,
u = 0, θ = 0 0 × R+,
u(x,0) = u0(x), u̇(x,0) = u1(x), θ(x,0) = θ0 in �.

(4.8)

Introduce the following condition:
Condition C. If ϕ ∈ H 1

0 (�)
n is such that

−1ϕϕϕ = γ 2ϕϕϕ, divϕϕϕ = 0; ϕϕϕ = 0 on0, (4.9)

for someγ ∈ R, thenϕϕϕ = 0. This condition was introduced in 1968 by Dafermos
who proved that, see Lebeau and Zuazua (1999),

E(t)→ 0 ast →∞
if and only if the domain� satisfies condition (C). The energy is defined by

E(t)

= 1

2

∫
�

[
µ|∇u(x, t)|2 + (λ+ µ)|divu(x, t)|2 + |u̇(x, t)|2 + α

β
|θ(x, t)|2

]
dx.

(4.10)

It is easy to show that the energy decreases along trajectories; more precisely

dE(t)

dt
= −α

β

∫
�

|∇θ(x, t)|2dx 6 0. (4.11)
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Condition (C) fails when� is a ball inRn.
The question studied by Lebeau and Zuazua (1999) concerns the exponential

decay of the energy. By using the decoupling method due to Henry et al. (1993)
the problem is reduced to the analysis of the Lamé system

8̈88 − µ1888 − (λ+ µ)∇div888 = 0 in Q = �× (0, T ),
888 = 0, on0 × (0, T ), (4.12)

888(x,0) = 8880(x), 8̇88(x,0) = 8881(x), in �.

The general theorems on exponential (uniform) decay rate are formulated as
follows

THEOREM 11. Assume thatn = 2 or 3. In the class of domains� satisfying
condition (C), the exponential decay property

∃c, ω > 0, E(t) 6 cE(0)e−ωt ,∀t > 0, (4.13)

for the system (4.8) holds if and only if there existsT > 0 andc1 > 0 such that

‖80‖L2(�)n + |81‖2
H−1(�)n

6 c1

∫ T

0
‖div8‖2

H−1(�)
dt, (4.14)

holds for every solution of the Lamé system (4.13).

THEOREM 12. Assume thatµ > 0, λ + 2µ > 0 andµ 6= λ + 2µ. Assume that
� is convex or such that there exists a ray of geometric optics in� of arbitrar-
ily large length which is always reflected perpendicularly on the boundary. Then
the observability inequality (4.14) for the Lamé system fails for anyT > 0 and
therefore the decay of solutions of (4.8) is not uniform.

We observe that convex domains may be classified in two sets:
(i) Those in which condition (C) fails. In this case there are solutions that do not
decay ast →∞.
(ii) Those in which (C) holds. In this case every solution converges to zero but
without a uniform decay rate. Convex domains are generically in the class (ii). It is
not known whether the class (i) contains any convex domain other than the ball.

Lebeau and Zuazua (1999) studied also the polynomial decay of solutions of
system (4.8).

4.2.2.

Liu (1998b) established a sufficient condition which guarantees the exponential
decay rate of the energy by means of an additional boundary damping. The reason
why the energyE(t) does not tend to zero ast → ∞ is that the total energy is
not dissipated completely in the form of thermal energy. Therefore Liu (1998b)
introduced a velocity feedback on part of the boundary of the thermoelastic body,
which is clamped along the rest of the boundary, to increase the loss of energy.
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The domain� is star-shaped and the boundary velocity feedback is assumed in
the following form

θ = 0, on0 × R+,
u = 0 on0 × R+,
µ∂u
∂n + (λ+ µ)(divu)n
+a(m · n)u+ (m · n)u̇ = 0, on01 × R+,

(4.15)

wherea = a(x) is a given nonnegative function on01, with

a ∈ C1(02). (4.16)

The methods of proofs are based on multiplier techniques and the asymptotic
property of the semigroups. By using Russell’s “controllability via stabilizability”
principle (see Russell, 1978), Liu solved also the problem ofpartial exact boundary
controllability.

4.3. THERMOVISCOELASTICITY

In this section we shall review the results due to Liu and Williams (1998) and Liu
(1998a) on partial exact controllability and exponential stabilization of thermovis-
coelastic systems.

4.3.1.

Consider the problem of partial exact controllability with Dirichlet boundary con-
trols for the following system

ü− µ1u− (λ+ µ∇divu+ α∇θ − ε ∫ t0 G(t − τ)[µ1u(x, τ)
+(λ+ µ)∇divu(x, τ)]dτ = 0, in Q,
θ̇ −1θ + αdivu̇ = 0, in Q,
u = g, θ = 0, on6,
u(x,0) = 0, u̇(x,0) = 0, θ(x,0) = 0, in �.

(4.17)

Here� is a star-shaped domain inRn of classC2, G(t) denotes the relaxation
function (see Deseri et al. 1999) andg the control acting on a part of6; in fact, on
6(x0).

For an isotropic material the re�xation function is an isotropic fourth-order,
time dependent tensor. Liu assumes its simplified form with only one essential
component.

The main result of Liu and Williams (1998) is stated as follows.

THEOREM 13. Suppose thatG ∈ H 2(0, T ) and T > 2R(x0)/
√
µ. Then there

existsε0, α0 > 0 such that ifε 6 ε0 andα 6 α0, then for every state(uT ,u1
T ) ∈

L2(�)n×H−1(�)n there exists a controlg ∈ L2(6(x0))n steering the displacement
of system (4.18) to the state(uT ,u1

T ).
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We recall that6(x0) = 0(x0)× (0, T ) and

0(x0) = {x ∈ 0|m(x) · n(x) > 0}.
REMARK 14. (i) Boundary observability inequality (indirect inequality) was es-
tablished by using classical multiplier techniques whilst the main result by the
HUM.
(ii) Theorem 13 requires the coefficientsα andβ to be “small”. The general case
seems to remain an open problem.
(iii) The solution (u, θ) of system (4.17) satisfies

u ∈ C([0, T ], L2(�)n) ∩ C1([0, T ]),H−1(�)n),

θ ∈ C([0, T ], L2(�)).
(4.18)

(iv) Liu and Williams (1998) claim, after Lagnese (1990), that it is not possible to
exactly controlθ by means of the boundary displacement control alone, and it is
physically unrealistic to useθ as an additional control variable. However, the role
of viscous effect was not revealed.

4.3.2.

Liu (1998a) studied the problem of uniform stabilization of the following thermo-
viscoelastic system with a boundary velocity feedback

ü− µ1u− (λ+ µ)∇divu
+µG ∗1u+ (λ+ µ)G ∗ ∇divu+ α∇θ = 0, in �× R+,
θ̇ −1θ + βdivu̇ = 0, in �× R+,
θ = 0, on0 × R+,
u = 0 on00× R+,
µ ∂
∂n (u−G ∗ u)+ (λ+ µ)(div(u−G ∗ u))n
+a(m · n)(u−G ∗ u)+ (m · n)u̇ = 0, on01× R+,
u(0) = u0, u̇(0) = u1, θ(0) = θ0, in 01× R+,
u(0)− u(−s) = w0(s), in �× R+.

(4.19)

As previously the domain� is assumed to be star-shaped and of classC2; we
assume that̄01 ∩ 0̄2 = ∅. The sign “?” denotes the convolution product in time:

G ∗ v(t) =
∫ t

−∞
G(t − τ)v(x, τ)dτ.

The relaxation function satisfies physically plausible assumptions which, in partic-
ular, imply

G(∞) = lim
t→∞G(t) = 0.
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The functiona = a(x) is a given nonnegative function witha ∈ C1(01) and
w0(x, τ) is a specified history. Furthermore,A = maxx∈01 a(x) is assumed to be
small enough and the following condition holds

01 6= ∅ or a(x)≡/ 0. (4.20)

Under the above assumptions the thermoviscoelastic energy defined by

E(t) = κ‖u(t)‖2
H1
00(�)

n
+ 1

2

[
‖u̇(t)‖2

L2(�)n
+ α
β
‖θ(t)‖2

L2(�)n

]
+
∫ t

−∞
G(t − τ)‖u(t)− u(τ )‖2

H1
01(�)

ndτ, (4.21)

decays exponentially

E(t) 6 cE(0)e−ωt , ∀t > 0.

For solutions of (4.19) with(u0,u1, θ0,w0) ∈ H . The positive constants can be
explicitly given (the formulae are quite involved) and

κ = 1−
∫ ∞

0
G(t)dt > 0.

The spaces are defined as follows

H 1
00
(�) = {u ∈ H 1(�)|u = 0 on00},

H = H 1
00
(�)n × L2(�)n × L2(�)× L2(G, (0,∞),H 1

00
(�)n).

The history spaceL2(G, (0,∞),H 1
00
(�)n) consists of functionsw on (0,∞) for

which

‖w‖2
L2(G,(0,∞),H1

00
(�)n)
=
∫ ∞

0
G(s)‖w(τ )‖2

H1
00(�)

ndτ <∞.

REMARK 15. (i) The proof is based on the semigroup approach, multiplier tech-
niques and Lyapunov methods. The Lyapunov function is of a generalized type.
(ii) Liu (1998a) discussed also weakening of the assumptions specified above. In
all cases the problem of the exponential decay of the energy remains open.

5. Final remarks

Chapter 8 of the book by Panagiotopoulos (1993) summarizes the research of this
author and of his coworkers on the optimal control and the parameter identification
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problems of systems governed byhemivariational inequalities. It seems thatnon-
convexanalysis has not yet been incorporated in the study of exact (and approxim-
ate) controllability and stabilization problems. For instance, it would be interesting
to consider nonconvex contact and interface conditions for elastic vibrating bodies.

Another challenging problem would be a study of remodelling of tissues as
control problems, cf. Telega and Lekszycki (2000). It seems that in biological
materials cells play the role of controls.

On account of limited number of pages of this contribution the result related
to asymptotic analysis and elastic structures could not be included, cf. Telega and
Bielski (1999, 2000).
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