ﬁl‘ Journal of Global Optimizationl7: 353-386, 2000. 353
i‘ © 2000KIluwer Academic Publishers. Printed in the Netherlands.

Controllability and Stabilization in Elasticity, Heat
Conduction and Thermoelasticity: Review of
Recent Developmerits

JOZEF JOACHIM TELEGA and WIODZIMIERZ ROBERT BIELSK?
Linstitute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland;
2|ntitute of Geophysics, Polish Academy of Science, Warsaw, Poland

(Received for publication May 2000)

Abstract. The aim of this paper is to review developments in exact and approximate controllability
as well as stabilization of elastic, thermoelastic, and thermo-viscoelastic bodies. Heat equations are
also discussed.

AMS Subiject Classification: 73C99, 93B05, 93B07, 93B52

Key words: Approximation; Elasticity; Exact and approximate controllability; Heat equations; Sta-
bilization; Thermoelasticity; Thermoviscoelasticity

Abbreviations: HUM — Hilbert Uniqueness Method; RHUM — Reachabillty Hilbert Uniqueness
Method

1. Introduction

Exact or at least approximate controllability and stabilization problems are im-
portant in the analysis of many engineering systems. One can distinguish three
essential topics which naturally arise: rigorous mathematical studies, approxima-
tion methods and technical realization of controls. This review is focused on the
first two topics. For technical aspects the reader is referred to Armstrong-Hélouvry
et al. (1994), Banks (1975), Banks et al. (1996), Benjeddou et al. (1997, 1999),
Destuynder et al. (1992), Holnicki-Szulc and Rodellar (1999), Tani et al. (1998),
Trindade et al. (1998), and Zhou and Tzou (2000).

We presume that the reader is familiar, more or less, with the books by Ko-
mornik (1994b), Lagnese (1989), Lagnese and Lions (1988) and Lions (1988a,b).

An excellent review paper by Russel (1978) still serves as a good introduction to
mathematical aspects of controllability, observability and stabilization of systems
described mainly by partial differential equations, cf. also Komornik (1988, 1989,
1995, 1997), Nikolski (1998), Ralston (1982).

* This paper is dedicated to the memory of Professor P.D. Panagiotopoulos
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Bardos et al. (1992) formulated the following general principle: “To control,
observe, or stabilize solutions of hyperbolic equations, it is necessary that we ob-
serve or control at least one point of each ray of geometric optics”. These authors
extended this principle to space dimensions higher than one. In higher dimensions,
however, the analysis is not as elementary as in dimension one. Advantages and
disadvantages of the proposed approach were also discussed.

The books by Avdonin and Ivanov (1989, 1995) offer a systematic approach
to the method of moments in controllability problems including applications to
one-dimensional problems of elasticity (strings, membranes).

Lebeau (1992) generalized the results due to Bardos, Lebeau and Rauch (Ap-
pendix 2 in Lions, 1988a) to Schrddinger type equations and simplified equation
of isotropic Kirchhoff plate. This approach exploits microlocal analysis.

Datko (1991) and Datko and You (1991) studied the influence of small time
delays on stabilization.

Klamka (1998) studied the approximate controllability of semilinear infinite-
dimensional second-order dynamical systems with damping. The general theory
was applied to a nonlinear beam equation. The same author (Klamka, 1999) intro-
duced the notion ofapproximate positive controllabilityfor linear infinite-
dimensional dynamic systems, for which the controls are taken to be nonnegative.
The theory proposed was applied to one-dimensional heat equation.

Lasiecka (1988) investigated the problem of local uniform stability of hyper-
bolic and parabolic equations with nonlinearities appearing in the boundary condi-
tions (in feedback form).

Bashirov and Kerimov (1997) introduced the controllability notions for partially
observed stochastic systems and discussed their relation with complete (exact) and
approximate controllabilities. A class of ergodic control problems was investigated
in Camilli (1996).

For impulse control problems the reader is referred to Camilli and Falcone
(1999) and the references therein.

The presentation in several papers just briefly reviewed is rather abstract. The
main aim of our contribution is to review more practical results obtained in the last
decade. We focus on papers related to mechanical problems: elasticity,
thermoelasticity and thermoviscoelasticity. Heat equations have also been
discussed.

In a separate paper a comprehensive review related to a wide class of physical
and mechanical problems will be presented (Telega and Bielski, 2000). This class
will also comprise wave and wave-like equations, Maxwell's equations, Stokes
and Navier-Stokes equations, KdV equation, fluid-structure systems, structures
(beams, membranes, plates and shells), junctions and asymptotic problems, includ-
ing homogenization.
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2. Linear elasticity

Lions (1988a, Chap. 4) applied the method HUM to solve the problem of exact con-
trollability of linear elastic bodies made of homogeneous and isotropic materials.
Both Dirichlet and Neumann boundary controls were examined. An extension to
homogeneous and anisotropic materials was studied by Telega and Bielski (1996).
Microperiodically inhomogeneous bodies were considered in Telega and Bielski
(1999). The same problem was later considered by Alabau and Komornik (1997)
for the domain$2 in R3 being a ball of radiusk whilst arbitrary bounded and
regular domains were assumed in Alabau and Komornik (1998).

In this section we shall present recent results on controllability and stabilization
of linear elasticity systems, including numerical realization of the HUM. Earlier
results have obviously been discussed in the papers presented below.

We observe that the available results are confined to geometrically linear prob-
lems (the theory of small displacements). Geometrically non-linear problems con-
cern only plates and shells, cf. Telega and Bielski (2000). Recent ideas due to
Russell (1997) and Renardy and Russell (1999), though not directly related to
the subject of this paper, are also worthy of mention. Russell (1997) introduced
the notionformation theory which refers to the controlled modification of the
geometric configuration, ghapeof an elastic body by means of attached or em-
bedded actuators. According to Renardy and Russell (1999), the subject material
of formation theory concerns the relationships between the applied controls, the
actuator distribution and the resulting deformation of the structure. In the above
two papers only static, linear elastic problems were investigated. It seems that this
emerging theory may find applications in optimal design and bone remodelling. In
the last case one can envisage nonmechanical controls. After an extension to quasi-
static problems the formation theory may throw new light on the theory of adaptive
elasticity, cf. Telega and Lekszycki (2000).

2.1. TRANSMISSION PROBLEM

Laguese (1997) generalized a transmission problem considered by Lions (1988a,
Chap. 6) for two wave equations to the case of anisotropic elasticity. More pre-
cisely, following Lagnese (1997) we shall consider the exact Dirichlet boundary
controllability for such a problem.

Let 2, 2, be bounded, open, connected setRin(in practicen = 1,2 or 3)
with smooth boundarief andT';, respectively, such tha?, c Q. We setQ, =
Q\Q1, ', = 3Qy; obviouslyI', = I' U T';. This assumption on domains precludes
the case of elastic body made of two layers. Two linear elastic bodies are identified
with ©; and Q,. Their elastic modulbl.(;‘k),(a =1,2i,j,k, [ = 1,..,n) satisfy
the usual symmetry conditions

(@) _ (@ _ (o)
Aijrt = Qjirn = Aij (2.1)
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and the following ellipticity condition
36‘0 > 0, VE € E?, al.(qu)lEij Ey > Co|E|2. (22)

HereE! denotes the space of all real symmeirig n matrices.

Lagnese (1997) considered also weaker assumptioa#klpmvhere instead of
(2.1) we only have

@ _ @ . o
Qi = > a=12i,k=1...,m;jl=1...,n.

However, this case is not interesting for the classical linear elasticity. The summa-
tion convention over repeated indices is used, unless otherwise stated.
Consider the followingproblem of transmission

. 1 .
Uy — al'(j/zlulk,lj =0 InQ;=Q; x(0,71),

.. . (2.3)
ligp — ai(szZMZk,lj =0, INnQ=Q;x(0,7);
u=v,onx =TI x(0,7), (2.4)
= @ =aq? . > =T 0.7 25
Ui = U, a;;ye(Un; = a;5 e (U2)nj, ONXg 1 x (0, 1), (2.5)
Uy (x,0) = U0,(x,0) =0, inQ,. (2.6)
Heren = (n;) is the unit normal td"; pointing into$2; and
314,’ auj
Si(U) = 2. 2.7
e;j(U) (aijraxl-)/ (2.7)

Obviously, in (2.4) the functiow is a control function. The densiy, (¢ = 1, 2)
does not appear in (2.3). It is either incorporated aitd or one simply put, =
1. Such an assumption is unessential.
Let us define
@
a.. E,E
A, = inf —HMZUTH (2.8)
ecE" e#0 EmpEmp
The main result of Lagnese is summarized as follows.

THEOREM 1. Assume thal'; is star-shaped with respect to some poifite Q;
and let

Frx% ={xelx—x)-n>0,2x% =Tx% x (@), (2.9)

R(x% = max|x — xY|, (2.10)

xeo



CONTROLLABILITY AND STABILIZATION IN ELASTICITY, HEAT CONDUCTION 357

wheren is the unit outer normal td@'. Let

rVT = {(UJ_(, T)’ u2('7 T)? Ul('7 T)? UZ('7 T)|V € LZ(E)I’!,
v=00onX\Z (%}

Vee B! aj) EyEu > ajpy Eij . (2.11)
and if
27/ 2R (x°
T>Tk% = %, (2.12)
2

thenVy = H x V* where
H = L*(Q1)" x L*(Q)",
V = {(¢p1, p2) € H'(Q)" x H*(22)"l¢2r = 0, oar, = @21, ) 0
The proof uses classical multipliers to derive a priori estimates and HUM.

REMARK 1. (i) Theorem 1 can be extended to the situation involvih@nd
p > 2 nested open setsy, ... ,w, With@; C wj41,i =1,...,p -1 w, =
Q. Set:Q = w1, = wi\wj_1,i = 1,...,p; Iy = dw;. The boundary
I;,i=1,...,p—1,is star-shaped with respect to a poifite Q.

(i) It is not known whether the monotonicity condition (2.11) is necessary for
exact controllability in dimension > 2.

(i) For isotropic materials the monotonicity condition (2.11) is satisfied provided
that

n1 = ppandig > Ao

whereu,, A, (@ = 1, 2) are the Lamé coefficients.

(iv) Nicaise (1993) studied the Dirichlet-Neumann boundary controllability of iso-
tropic homogeneous elastic bodies identified withwhere2 is a polygonal
domain of the plane or a polyhedral domain of the space. Primarily, in Nicaise
(1992), the regularity of solutions was examined for bots 2 (corners) and
n = 3 (vertex and edge singularities). The results of Nicaise (1993) extend
those obtained earlier by Grisvard (1989) for the wave equation.

2.2. APPROXIMATE CONTROLLABILITY BY MEANS OF PLANAR BODY FORCES
Consider the following system of linear isotropic elasticity, cf. Zuazua (1996),
U— uAu — (A + p)Vdivu = fxo, in0=Qx(0,T7T),
u=0, onI" x (0, T), (2.13)
u(0) = u°, u(0) = ut, in Q,
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where, u denote the Lamé coefficients. HePeis an open and nonempty subset
of Q. We assume thdte L?(Q)"(n = 2, 3) is of the form

f=(fr....fo1.0). (2.14)

Prior to the formulation of the approximate controllability result we have to intro-
duce indispensible notations. Let

() = M (2.15)

Ji

the quantitys, being defined as follows. For any open suli@ebf

§,(Q Q) = sup inf  I(y), (2.16)
xeQ\Q ¥ E€§(x:821)

whereg (x; Q1) denotes the set of curves$hjoining x and€2; and!(-) stands for
the length of the curve. We s&t(2; ¥) = oo.

By "' ¢ R**andQ! c R we denote, respectively, the projectionsobn
the hyperplane;,, = 0 and on the axi®x,. Furthermore, by(*~* c R~ (resp.
Ut ¢ R) we denote the union of the projections on the hyperplane: 0 (resp.,
on the axisOx,) of all those components of the boundadhthat can be written in
the formx, = h(x4, ... , x,_1) With & of classC? and such that

A+ 2
IV'h(xy, ..., x—)” # o

or
A/h(xl, e ,xn_l) 75 0.

By V' andA’ we denote the gradient and Laplacian in the variables. . . , x,_1).
The approximate controllability result proved by Zuazua (1996) is formulated
as follows.

THEOREM 2. Let Q2 satisfies the following four conditions:

(i) Q is a piecewise?-bounded domain.

(i) Some open and nonemp&f component of* can be written in the form:
Xp = h(x1, ..., Xy—1) With |V'h|? % (A + 2u)/p or A’h # 0 everywhere on
that component.

(iii) There exists a point of &? component of the boundary 6f where the
tangent hyperplane tQ exists, and it is parallel to the axi@x,,.

(iv) Whemn = 3, either

(iv); an open subset df is contained in a plane of the form = ¢
or

(iv)2 €2 is not symmetric with respect to a plane of the form= c.
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Then, if

8, (2; O)
>2———
Ji

system (2.13) is approximately controllable at time T under the constraint (2.14),
where

T + T*(Q),

1 1
THQ) = 2 mi —8,1_ Qn—l; un—l , R | Ql; /ul .
(€2) mm(\/ﬁ 1( ) o 1( )

More precisely, for aliu®, u) and (u%, u}) in H}(2)" x L?()" ande > Othere
existsf e L?(Q)" obeying (2.14) such that the solution of (2.13) satisfies

02 . 12 1172
UCT) = Uzl g + 10(T) = Uzl 2] 2 <e. O

REMARK 2. (a) Without the constraint (2.14), exact controllability with(Q)"-
controls holds for a certain class Ofs, cf. Lions (1988a). For instance, f# is a
neighbourhood of the boundary ©f the exact controllability holds witl (2) =
diam(Q\O)/ /1.

(b) Zuazua (1996) constructed a two-dimensional domain for whidif2) > O.

This author provided also two examples of noncontrollability.

(c) Under the constraint (2.14), the approximate controllability cannot be obtained
directly from Holmgren’s uniqueness theorem. Zuazua (1996) solved the problem
of uniqueness of the corresponding homogeneous (forward) system by reducing
the proof to uniqueness result for scalar wave equations.

2.3. STABILIZATION OF LINEAR ELASTIC BODIES

Earlier results on boundary stabilization of three-dimensional linear elastodynamic
system are due to Lagnese (1983). The same author studied also the case of plane
strain (two-dimensional elasticity), cf. Lagnese (1991). In both cases the elastic
bodies are made of homogeneous isotropic materials.

The aim of the present section is to present the results obtained afterwards by
other authors. The papers by Lagnese (1983, 1991), however, largely influenced on
the developments which followed.

2.3.1. Asymptotic Stability of Isotropic Bodies with Internal Damping

Aassila (1998a) extended the approach used by him for the damped wave equation
to the case of homogeneous isotropic geometrically linear elastic bodies, cf. Aassila
(1998b).
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Consider the following elasticity system with internal damping
U—pAu— A+ pw)Vu+G@U) =0, inQ xR,

u=0, only x RT, 2.17)
pM 4 (4 pw(divun+ gu=0, only x RF, :
u(0) = u%, u(0) = u', in Q.

HereQ is a bounded open domainif having a boundary of classC?, {I'g, I'1}
is a partition ofl" such thatfy N T’y = ¥ andg; : 'y — R* is a continuously
differentiable function.

Each component of the vect@(U) is specified by (U). The functiong satisfies
the following conditions:

(H;) g is anincreasing function of clags',

(H2) zg(z) > Oforallz #0,

(Hs) there exists a numbey > 2 satisfying(n — 2)g < 2n and two positive
constants, ¢, such that

c1lz] <182 < cplz|97? forall z] > 1

We observe that no growth condition at the origin is imposed and it suffices to
assume thaf2 is of finite measure (not necessarily bounded). The assumptions
imposed ong preclude the possibility of construction of a standard Lyapunov
function, which played an important role in the study performed by Lagnese (1983,
1991).

Using the standard nonlinear semigroup theory we conclude that for any given
(W, uh e HE ()" x L*(Q)" there exists a uniquenild (weak) solutionu e
CR*, HX(Q)") N CYR*, L2()") and the linear mappingu®, ul) — u is con-
tinuous with respect to these topologies. The s;ﬂléoeis defined by

HE (Q) = {u € H(Q)|u = 0 0onT}. (2.18)

If U’ e (H*(Q) N HE ()", ut € HE ()", and
0

au .
P+ (A + ) (divu®)n 4+ g1u® = 0on Ty, g(ut) € L3(Q).

Then we have the following regularity property
ue C(RY, H2(Q)") N CYRY, HY(Q)") N C3R*, L2(Q)").

In this case we say thatis astrong solution.
The energy of the solution is defined by

1 1
E@t) = E/ (1a® + wVul® + (A + w)(divu)?) dx+§/ g1(x)|ul?dT.
Q ¥
(2.19)
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If uis a strong solution, standard calculation yields, cf. Komornik (1994b)

T
E(S)—E(T):/ /U-G(U)dxdt (2.20)
S Q

forall0 < S < T < +o0. The last identity remains valid for all mild solutions by
a density argument. By (Hlwe conclude thak (r) is non-increasing.
The strong asymptotic stability result is formulated as follows.

THEOREM 3. For every solution of the system (2.17) we have
E@) — 0ast — +o0. O

REMARK 3. Caution is needed when reading Aassila’s paper (1998a) since in
his Eq. (1.1) the damping term is a function with valuesRifand not inR*.
Consequently, one can consider more general damping by assuming that each
component ofs is not necessarily the same.

2.3.2. Boundary Stabilization of Isotropic and Anisotropic Linear Elastic Bodies

Komornik (1994a) and Alabau and Komornik (1998) devised a constructive method
applicable to boundary stabilization problems primarily studied by Lagnese (1983,
1991). More precisely, Komornik (1994a) studistropic linear elastic bodies
whilst Alabau and Komornik (1998) investigatadisotropicbodies. In both cases
the bodies are made of homogeneous materials. It is thus sufficient to present the
results contained in Alabau and Komornik (1998). These authors applied suitable
dissipative boundary feedbacks. A nonlinear boundary feedback was applied by
Martinez (1999). The last author, however, considered linear elastic bodies made
of materials with only cubic symmetry.

Consider the following system, cf. Alabau and Komornik (1998),

U—dive =0 in Q2 x RT,
u=0, onTy x RT,
on+Au+Bu=0, onl;xR", (2.21)
u0) = u° 1u(0) =ut, inQ,
whereo = (0;),i, j = 1,..., n, is the stress tensor defined by
0ij = ajjuern(U). (2.22)

The strain tensor is given by (2.7) and the elastic modyli satisfy (2.1) and
(2.2). In Eq. (2.21, A, B are given nonnegative coefficients, for simplicity. One
can, however, easily extend the result which follows to the case wharel B are
nonnegative functions of clags! onT';.

The energy of the solution of (2.21) is given by

1 1
E(t) = —/(IUIZ-{—Jije,-j(u))dx—i— —/ Aluj2dr (2.23)
2 Q 2 ry
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and is a nonincreasing function ok R*.
Geometric assumptions are rather restrictive: it is assumed that

Q = 21\ Qo, (2.24)

where; is an open ball, saR2; = B(x%, R), Q is a star-shaped domain with
respect toc® whose closure belongs £y, and

To=0Q0, I'i=0dQ. (2.25)

The case2g = ¢ is not excluded. The following theorem was proved by Alabau
and Komornik (1998).

THEOREM 4. Let the elasticity tenso(a; ;) satisfy (2.1), (2.2), and le®, I'o,
andI'; be defined by (2.24), (2.25). Given two positive constants A and B with A
< ¢ol(4R), there exists a positive numhkesuch that all (weak) solutions of (2.21)
satisfy the energy estimate

E(t) < E(0)et™, (2.26)

forall + > 0..
If T + 0 # ¢, then the result holds also fot = 0.

We recall thatr® € R” is arbitrary and fixed, moreover
R =sup|x —x°,x € Q.

REMARK 4. (i) The proof of the last theorem is based on a Lyapunov-type method
and a new identity which allows to estimate certain boundary integrals.

(i) The proof can be adapted to domains such fhats closeto a ball.

(iif) The proof of Th. 4 provides an explicit form @b which involves a constant
depending oM and B but not on the choice of the initial data.

(iv) Applying the approach developed in Komornik (1997), Alabau and Komornik
(1998) formulated also a general theorem allowing to construct boundary feedback
for observable systems which lead to arbitrarily large decay rates. The second the-
orem applies to all bounded domains of cl&ss choosing, for instancd;y = ¢

andlI'y =T.

(v) Liu (1998b, Th. 2.2) improved the result due to Alabau and Komornik (1998)
concerning isotropic bodies: the dom&may be star-shaped and the assumption
on thefunction A(x) in (2.21} can really be weakened, as conjectured in the
second paper.

(vi) Tcheugoué Tebou (1996) studied the stabilization problem for the system
(2.21) in the two-dimensional case. The materiakwtropic. The following the-
orem was proved.

THEOREM 5. Letk € L°°(T";) satisfy

1
k> = a.e.onl'y, |km| < la.e. onl';.
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Choose the functions A and B by

A= %M(m- mk?, B = /m(m-n)k.
Then we have
E(t) < [exp(l — /ut/3R)]E(Q) Vi >3R//I,
whereu is the Lamé constant. a
We recall that

R = sug|m()|, x € 1,
I; = {xelm&)-n() > 0}, o=\

REMARK 5. Martinez (1999) investigated a class of nonlinear boundary feedback
laws for bodies made of materials with cubic symmetry, cf. Chernykh (1988).
Such materials are characterizedthyee independent coefficient&/e recall that
isotropic materials are described by only two coefficients (the Lamé constants).
The boundary feedback law is given by

on+au+bg() =0 only x RY, (2.27)

wherea, b : I'1 — RT are two continuously differentiable functions whilgt
R — R is a continuous nondecreasing function such that

Vz e R, lgi ()] <1+ clzl, (2.28)

for some positive constamt Martinez (1999) proved a uniform stabilization the-
orem and derived rather precise decay estimates.

REMARK 6. Horn (1998) established an exponential (uniform) decay of solution
for the elastodynamic system of isotropic elasticity. Only the velocity feedback is
acting through the boundary:

cWwn=-0 onl; xR".
In our opinion, one should write:
ocWn=—all, o>0 onlyxR".

The constants is not dimensionless; particularly one can take= 1 (in appro-
priate units, depending on the units of the velocitgnd tractionsr (u)n).

The uniform stability theorem of Horn (1998) does not require the usual strong
geometric assumption dny. Under the usual assumption of smooth boundary of
Q, it suffices to impose the following standard condition:

mx)-n<0 onTl.
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The uniform stability theorem is based on the multiplier method and sharp trace
estimates for the tangential derivative of the displacements on the boundary as well
as on the unique continuation results for the corresponding static system.

2.4. NUMERICAL APPROACH TO EXACT BOUNDARY CONTROLLABILITY

Asch and Lebeau (1996) elaborated a numerical approach to solve the exact bound-
ary controllability for the wave equation. Such an approach, based on the conjugate
gradient method, was extended by Asch and Vai (1998) to two dimendsmal
tropic elasticity. Here we shall present the main idea in a more general context
of anisotropic elasticity, cf. comments given at the beginning of Section 2. The
conjugate gradient method can readily be extended to three-dimensional problems.

Let  be a bounded, sufficiently regular domainR#. Consider the following
system of dynamic elasticity

i — dive(u) =0, inQ=xQx(,T), (2.29)
u(x,, 0) = u%(x), U(x,,0) = u(x), ing, (2.30)
u=y, onX=Ix(0,T) (2.31)

or

_JvonXo=Tpx (0, 7),

u= (2.32)
0on X\ Xo.

As usual, we want to find a contrelsuch that ifu is a solution to (2.29), (2.30)
and (2.31) or (2.32), then

U(xg, T) = U(xe, 0) =0 (2.33)
Herex = (x,),a = 1,2, and

Oap(U) = agpy e, (U). (2.34)

The elasticity tensat,g,, satisfies (2.1), (2.2), whilst,z(u) is given by (2.7).
Let us pass to the characterization of the conirdVe set

V = H}(Q)? x LA(Q)?, V' = H Q) x LAQ)% (2.35)
Let (f°, f1) e V. First, we solve the following system

® — dive(®) =0 in Q,
®(x,0) =), @&(x,0) =dx), inQ, (2.36)
=0 onX.
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Next, we solve the backward problem

¥ — dive (W) = 0, in Q,
W(x,T)=0,¥(x,T)=0, ing,
(2.37)
w_ [o@n on%o,
~]o on =\ Zo.
Finally, we introduce the linear operatar
AV >V (2.38)

, Y - (W (x,0), —¥(x, 0))

It is known that forT sufficiently large,A is an isomorphism oV on V', cf.
Telega and Bielski (1996), Alabau and Komornik (1998). In the case of isotropy,

2 0 0 2
T > TER(X ) wherex” € R< and

R(x% = max|x — xY|,

x€Q

Io=Tx% ={x elx—x°% nkx) >0}

Thus the method HUM means that we have to find the unique soldfioft) € v
such that

A, Y = (W(x, 0), —W(x, 0)).

The bilinear form{(A(-), (-)) is symmetric and continuous dn x V. Moreover,
under the assumptions ensuring applicability of the method HUM this bilinear form
is V-elliptic. Consequently, the Lax-Milgram lemma applies, cf. Yosida (1978)
and we can use a conjugate gradient algorithm to solve the following variational
problem:

find (f°, f*) € V such that

| (A, Y, . F)) = (W(x,0), —w(x,0), FLENVE.F)eV

Conjugate gradient algorithm
The scalar product df is defined by

(U, W)y, = f (Vul . vwP + ut - whdx,
Q

whereU = (u°, ul), W = WP, wh).
Step 0. Initialization

o let(f, 1) = ((fSh, 2, (fgh fa) e V;
o let(gd g e V;
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¢ solve the equation idb°:
&° — dive (@) =0, inoO,

<I>0(x, 0 = fo(x), ® (x,0) = fl(x), in Q, (2.39)
0 0
®°=0 onx.

e solve the backward equation

¥’ — dive (%) =0 in 0,
Wi, 7)=0, . 7)=0, ing,

2.40
W _ o(¥On onz, (240
0 on E\Eo;
e solve
~AQR =¥, 00— ul, inQ, (2.41)

g0 =0, onT,
and
o5 = u® — ¥(x, 0) in Q,

e if (g3, g8) = Ooris small, putf, ') = (5, f3) and stop the algorithm; if not,
establish the first direction of desceat, wg) = (g9, g3).

Step 1Descent. Fok > 0, suppose that?, f}), (g0, g), and(w?, wh) are known;
the new iteratesfy . fi, 1), (92,1, oF,,, and (W), ;. w},,), are calculated as fol-
lows:

e solve the equation ib;:

@, — dive (@) =0 in 0,
@, (x,0) =wWl(x), @(x,0) =w;(x), ing, (2.42)
®, =0, onx:

e solve the backward equation

W — dive (¥)) = 0, in 0,
W, (x,T)=0, ¥ (x, T)=0, InQ
. o(¥,)n onX,

¥, =
0 on X\ =

(2.43)
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e solve
0 = .
_—OAgk =W, (x,0), Iing, (2.44)
0, =0, onT,
and
0 = —W(x,0) inQ;
e calculate
. 22, [ (Ve 2 + g Pdx
k = =V, o =1l o
Yo o (VB VWl + g “wp“)dx
with no summation ovet.
e Update all quantities:
(21 i) = (. F) — oWl wh),
D1 = P — 0k Px, (2.45)

W1 =Wy — 0k Wy,
(92,1, 9t = (0, 9D — ok (T G-

Obviously, in Eq. (2.45) there is no summation oker
Step 2Convergence test and construction of new descent direction:

o if (90,5, 0t1) = 0or (g, 0t is small, setf®, 1) = (f), ;. fi. 1), ® =
.1, ¥ =V, and stop the algorithm;
o if not, establish the new direction of searctf, ,, wy , ,):

2 0, 1«
_ [[Cre ]G _ Yo JoUVeE P + gD dx
1@ GolZ 2y [V 12 + gr*Pdx

(WP 15 Wig) = (415 Gipn) + (W), W), (2.46)

and go to Step 1 with &= k + 1; the summation convention does not apply to the
last step.

Asch and Vai (1998) performed also a discretization of the presented algorithm.
It was assumed tha® is a square of length 1. The approach used is similar to the
one developed by Asch and Lebeau (1996) for the wave equation. Various numer-
ical aspects related to the problem studied were carefully discussed. For instance,
the energetic cost vectandenergetic cost factoare criterions for the evaluation
of the cost of the control and the energetic cost. The results of numerical calcula-
tions show the propagation of elastic waves without the control on the boundary
and with the boundary control for several cases of control.
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3. Heat Equations

The comprehensive papers by Glowinski and Lions (1994, 1996) constitute a good
introduction to approximate controllability of diffusion equation and relevant nu-
merical methods, including numerical tests. In this section we review recent devel-
opments and topics not discussed by these authors.

3.1

Fabre et al. (1993) considered the approximate controllability of the following
system

t—Au+au=vx9, INQ=Qx(0,T7T),
u=0 onXx=Ix(0,T7), (3.1)
w0 =0 IinQ.

HereQ c R",n > 1, is an open and bounded set witf boundary andd
an open and nonempty subset@f As previously,v = v(x,t) represents the
control function. We observe that we can consider the initial conditi@® = u°..
However, since the problem is linear it suffices to treat the gése 0.

System (3.1) is said to bie”-approximately controllald in L2(2) at timeT >
0 if the following holds:
“the set of reachable states at tiffie- O,

&(T) = {u(x, T)|u is solution of (3.1) withL? (D x (0, T))}, (3.2)

is dense inL?(R)”; here 1 < p < oo. Obviously, this definition is equivalent to
the following statement: for every > 0 and for everyu; € L?(Q) there exists
v e LP(Q) such that|u(T) — urll;2q) < €.

By a standard approach we prove that the problem of the approximate con-
trollability reduces to the following uniqueness propertydl&atisfies the adjoint
system:

—d—ADP+a® =0, inQ,
=0, onXx, (3.3)
O(T) = d° € L3(Q),

then® = 0in O x (0, T) implies® = 0in Q x (0, T). We recall that since the
velocity of heat propagation is infinit&, may be arbitrary small.

Let us pass to a characterization of the control which minimizeth® x
(0, T))-norm and particularly whep = +oo. To this end we recall thag <
sgn(s) if g(x,t) = s(x,t)/|s(x, )| if s(x,t) # 0and|g(x,t)] < 1 on the set
01 = {(x,t)|s(x, 1) = 0}. By sgno(s) we denote the element ®fn(s) which is
equal to 0 onQ;. We will say that a functiorv is quasi bang-bang if(x, ) =
Ag(x, 1) wherel is a constant and € sgn(s) for some functiors.
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We set

Uli={v e LP(O x (0, T))|the solution of (3.1) satisfies
Nlu(T) —urll 20 < €}.

Fabre et al. (1993) proved the following theorem.

THEOREM 6. For 2 < p < 400, we have
1 .
m|n{§||v||§,,wx(oj))|v e U} = —min{J,(®%|2° € LZ(Q)}, (3.4)
where
0 1 / 2 0 140
Jp(cb ):E(f |(D(x,t)|pdxdt) +€||(D ”LZ(Q)—/M (Ddx,
Dx(0,T) Q
(3.5)
and @ is the solution of (3.3) witld (7) = @°; moreover% + % =1
Also, if v, denotes the control which minimizes tii&-norm overUZ, then

{vp} p<+o0 IS DOUNded inL2(O x (0, 7)) and if v is a limit point of{v,} <100 When
p tends to+oo then

€ Ugg and||v]|pe©x (0.7 = Min{|[v]lze©x .1V € Uggl,
is quasi bang-bang

(AR~

REMARK 7. (i) If p < 400, there exists a unique control minimizing tfe-
norm over admissible controls; fagr= +oo the uniqueness result is not available.
(i) If p < +oo, the problem mif/,(®%|d° € L2(Q)} is the dual problem of
min{(1/2||v||%p(DX(O’T))|v e UPr}, in the sense of Rockafellar's theory of duality
presented in Ekeland and Temam (1976).

If p = +o0, the problem mif/,,(®°)|®° e L?(Q)} is a primal problem; the
dual problem means evaluating

min{1/2||v| L0 x©m)lv € Uqgg)

3.2.

Lebeau and Robbiano (1995) solved the problem of exact internal controllability
of the linear heat equation posed on a compact and connected Riemann manifold
of classC®. This interesting result was inspired by the paper of Russell (1973)
who proved that an exact controllability result for the wave equation implies the
exact controllability of the heat equation. Technical details of proofs for this par-
ticular case were carefully elaborated. The above authors exploited estimates on
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the elliptic equation;’t—z2 + A, deduced from Carleman’s estimates. We observe that
in the parabolic case there is no geometric constraint on the control region.

3.3.

Ji and Lasiecka (1998) studied the following abstract model:

iw=Au+ Bv in[D(A"],
u(0) =ug € H,
y=Cu,

where[D(A*] is the dual ofD(A*) with respect to thed-topology, A is a gen-
erator of an analytic semigroup defined on a Hilbert spHGeB is the control
operator, and’ is the observation. Both control and observation are modelled by
fully unbounded operators. Under certain hypothesed oB andC there exists

an infinite-dimensional “compensatat; the solution of

z=(A+BF —KC)z+ KCu,
such that the feedback control
v=Fz

exponentially stabilizes the abstract model considered. The linear opeFat&rs
appear in the stabilizability-detectability assumption.

The study was motivated by recent applications of “smart material” technology
in the context of control and stabilization. Smart actuators and sensors such as
piezoceramic patches, piezoelectric devices are modelled by unbounded operators,
cf. Banks et al. (1996).

The main result of Ji and Lasiecka (1998) provides a construction of the par-
tially observed stabilizing feedback. Elaboration of approximating schemes re-
quires many assumptions on approximation of operatoiB, C, F andK .

The general approach to partially observed control systems just sketched was
used by Ji and Lasiecka (1998) to the following heat equation with boundary
control and boundary observation:

0= Au+c’u, inQ xR,
u=v, onl xRT,
au .
y=—, inI'xR",
an
u©) =u° inQ.

The bounded domaift C R” is either smooth or convex.
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3.4.

Fabre et al. (1995) examined the problemapiproximate controllability of the
semilinear heat equatiowhen the control acts on any open and nonempty subset
of @ ¢ R",n > 1, or on a part of the boundary. The assumption@and© have
been specified in Sec. 3.1. Lgthe a real and globally Lipschitz function such that

3¢>0,3d >0, [f(2)|<clz|+d. (3.6)

Internal controllability
Consider now the following semilinear heat equation

u—Au+ f(u) =gx9O, inQ,
u=0, onx, (3.7)
u©0 =u’ inQ,

whereg represents the control function ageD is the characteristic function @9,
the set where controls are supported.

The definition of approximate controllability is similar to the one given in Sec.
3.1; now, howevery is the solution of (3.7) and € L?(Q). Furthermore, system
(3.7) is approximately controllable i@ (£2) (the space of uniformly continuous
functions vanishing ol = 9<2, endowed with the norm of the supremum) at time
T > 0if for every i € Co(Q) the set

S(t) = {u(x, T)|u is the solution of (3.7) witly € L*(Q)},

is dense inCo(L2).

Equivalently we may formulate these definitions as follows: For ewgrye
L7 (R2) (respectivelyCy(£2)) and for every > 0, there exists a contr@gl e L”(Q)
(respectivelyL>°(Q)) such that the solutiom of (3.7) satisfiegu(T) —ur|lLr) <
€ (respectively|u(T) — urllc,@)<e)-

The internal approximate controllability result is formulated as follows.

THEOREM 7. Under the above assumptions gnsystem (3.7) is approximately
controllable inL?(2) for 1 < p < oo and inCy(£2) at any timeT > 0. Moreover,
for everyu! e L7(Q) (respectivelyCo(Q2)) and for everye > 0, we can find a
control g € LP(Q) (respectivelyL.*>°(Q)) of the form:

glx,1) € (/ lo(x, t)Idxdt> sgn(Q) X0 x(0,7)>
Ox(0,T)

wherey is the solution of a suitable heat equation, such thatl’) —uz||1r) < €
(respectively|u(T) — urllcy) < €).

The proof combines variational approach to the linear equation with fixed point
theorem (Kakutani’s theorem).
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REMARK 8. (i) Controls of the form appearing in the last theorem are quasi bang-
bang controls, cf. Sec. 3.1.

(i) Fabre et al. (1995) considered also approximate boundary controllability in
L?(Q) forany 1< p < oo and arbitraryl" > 0. In this case the system studied is

u—Au+ f(u)=0, inQ,
u = ng}:]_a on Ea (38)
u(0) = u°,

whereg, = g1(o, t) represents the control functiom,is the boundary variable and
Xz, IS the characteristic function &f; = I'; x (0, T'), the set where the controls
are supported.

System (3.8) is said to be approximately controllabld.i{2) at timeT > 0
if the following holds: For every® ¢ L?(Q) the set of reachable states at time
T=>0

Sp(T) = {u(x, T)|u is the solution of (3.8) witly; € L= (2)}

is dense inL?(Q2).

3.5.

Zuazua (1997) introduced the notionfofite (or finite dimensionalyull control-
lability for the semilinear heat equation. This notion is introduced as follows: Given
an initial datax® in L2(Q2) and a control time’ > 0, find a controlg € L?(Q)
such that the solution of (3.7) satisfies

HHﬁnLl(T) =0.

Here Hj, is a finite dimensional subspace bf(2) and I1y,, denotes the ortho-
gonal projection fromL2(2) into Hy,.

It seems that this notion of controllability is of interest from a computational
point of view, since in practice one can only test numerically the reachability of a
finite number of constraints.

The function f in (3.7) is of classC! and f(0) = 0. The control function
g = g(x,1) is assumed to be ih?(Q) and«® in L?(Q). Obviously, different
functional settings are possible. Under appropriate growth conditiof amd if

u°ll 20y < €, (3.9)

then the solution of (3.7) satisfies (3.8)lepends oiffy,, T and®. This statement
characterizes the local null controllability.
If f isglobally Lipschitz the following controllability result holds.
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THEOREM 8. For any T > 0, © open non-empty subset Qf Hs, finite dimen-
sional subspace af?(Q), u®, ur € L3(Q), ande > 0, there existg € L?(Q)
such that the solution of (3.7) satisfies

lu(T) —urll 2@ <€,
and

HHﬁn (M(T)) = HHﬁn (MT)-

REMARK 9. (i) Theorem 3.3 implies that the approximate control driving the
initial datax® to the ballB(ur, €) of L?(2) can be chosen so that the final state
satisfies simultaneously a finite number of exact constraints.

(ii) Similar results can be obtained for the problem of boundary control.

REMARK 10. Khapalov (1999d) considerdihite exact controllabilityand ap-
proximate controllability for th@ne-dimensional semilinedeat equation iQ =
0,1) x (0, T)

=ty + f @) + () xapp (), v € L0, T),

u@©,t) =u(l,t) =0, u(x,0) =u®eL?0,1), (3.10)

where(l1, o) C (0, 1).

The controllability results were proved under the assumptionithat/, are
irrational numbers. Since the problems is one-dimensional in space, the proofs
combine author’'s asymptotic method (see Khapalov, 1995) with the Riesz basis
approach relevant to the linear boundary problems with pointwise controls.

3.6.

Khapalov (1995) considereapproximate controllabilityof the following nonlinear
equation

w=Au—a(x,t,u,Vu) + (Bv)(x,1), inQ,
u=0, onX, (3.11)
u(0) = u® € LA(Q).

HereQ is a bounded domain &”,n > 1;a(x, t, u, p) is measurable im, ¢, u, p
with respect to Lebesgue measure and continuous jpnfor almost all(x, t) €
Q; B is alinear operator defined on a control space with rand&i@). One- and
two-dimensional cases with specific choicesBolvere also discussed.
In subsequent papers, Khapalov (1998, 1999a, 1999b) studied the case where

(Bv)(x,t) = v(x, t)yxo (x). 3.12)
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3.7.

Liu and Williams (1997) and Khapalov (1999c¢) studied the problem of exact con-
trollability of system (3.7). The former authors proved exact controllability under
the assumption that the functiogf(z, u) appearing in (3.%)is continuous ifl" on

[0, T] and globally Lipschitz continuous im on R, that is there exists a positive
constant such that

| (¢t z1) — f(t,22)| < k|z1 — zp|, forall z1, zo € R. (3.13)
Under this assumption we have the following exact controllability result.

THEOREM 9. There exists &, > 0 such that for0 < T < Ty system (3.7) is
exactly controllable inL?(R2) at time T, that is, for anyu®, u; € L?(Q) there

existsg(x,t) € L?(0, T; H~1(RQ)) such that the solution of (3.7) with = Q

satisfies

ulx,T)=ur, in Q. (3.14)
Furthermore, for any fixed® e L2(S2), the control function
g, t;ul, ur) 1 L3(Q) — L?(0, T; H ()
is Lipschitz continuous.
The proof is based on a construction of nonlinear monotone operator.

REMARK 11. Liu and Williams (1997) claim that we cannot expect the exact
internal controllability for the semilinear heat equatiorDifis a proper subset of

Q. The results of Khapalov (1999c) do not confirm such a conjecture. This author
showed that under the assumption of continuityf@f) and assuming appropri-
ate superlinear growth at infinity of this function, the exact null-controllability in
L?(R) of system (3.7) is possible. More precisely, in Khapalov's approach the set
9 depends om, i.e.,

OC) ={x,nxeO@) Cc, te(©OT)CO.

Thus in (3.7) we havgy (¢). The measure aD(¢) can be chosearbitrarily small
at all timesz. The notion of exact null-controllability used by Khapalov (1999c) is
a generalization of the usual one.

3.8.

Bodart and Fabre (1994) considered a semilinear heat equation with partially known
initial and boundary conditions. The insensitizing problem consists in finding a
control function such that some functional of the state is locally insensitive to the
perturbations of these initial and boundary conditioiiie insensitivity conditions
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are equivalent to a particular nonlinear exact controllability problem for parabolic
equations. Since, as we already know, exact controllability is difficult to achieve, it
is thus reasonable to introduce the conceppgdroximately insensitizing control

and then to solve a nonlinear approximate controllability problem of special type.

4. Thermal problems in deformable solids

In the previous section coupling between heat propagation and deformability has
not been taken into account. The aim of this section is to discuss such coupled
problems. Lions (1988b, Chapter 3) studied the controllability of a simplified sys-
tem of thermoelasticity by the RHUM method (Reverse or Reachability Hilbert
Unigueness Method). The approximate partial controllability of the same coupled
system was investigated by Glowinski and Lions (1996, Section 7), where also an
optimal control problem and its dual were studied.

4.1. CONTROLLABILITY

Consider an isotropic and homogeneous thermoelastic body occupying an open and
bounded se2 C R"(n > 1) with boundaryl™ = 92 of classC?. The displacement
vector is denoted by = (u; (x, t)) and the temperature &y= 6(x, 7).

Zuazua (1995) considered the following thermoelastic system in the presence
of the controlg € L?(Q)"

U— uAu— (A 4+ p)Vdivu + VO = gxo, in Q,
6 — AO + pdivu = 0, in Q,
u=0 6=0, onx,
u0) =u’, 0O =ul, 60 =06° ong,

(4.1)

whereu, A denote Lamés constants amd8 > 0 are coupling parameters; the set
9 is the same as in the previous section. System (4.1) possesses a unique solution
(u,u,9) € C([0, T], H), where

H = H}(Q)" x L*(Q)" x L3(Q)". (4.2)

The irreversibility and the regularizing effect of the heat equation satisfied by the
temperature imply that the exact controllability property may not hold. Hence, it
is natural to formulate the followingxact-approximate controllabilityproblem:
Given (u% ut, 6% and (ur,ut,69) ande > 0, find a controlg such that the
solution of (4.1) satisfies

w(T) =ul, ) =ui,
16(T) — 621l 122y < €.

Obviously, the exact controllability would occurd{T) = 62.
The main result of Zuazua (1995) is formulated as follows.
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THEOREM 10. Let © be a neighborhood of the boundafy = 9%, i.e., O =
QNO; whereD, is a neighborhood af in R”. Suppose thal' > diam(Q\9O/ /1.
Then, system (4.1) is exact-approximately controllable in ime

The proof combines the observability inequality for the adjoint system of ther-
moelasticity, multiplier techniques, compactness arguments, Holmgren’s Unique-
ness Theorem and the result due to Henry et al. (1993) on decoupling of the
thermoelasticity system.

REMARK 12. As we know, it is not natural to expect exact controllability results
for the system of thermoelasticity. However, we can expect to be able to reach
any sufficiently smootfinal state, for instance the null controllability state is such

a state. Lebeau and Zuazua (1998) solved this problem for simplified as well as
complete system of thermoelasticity in a compact, connecte&i&mannian man-
ifolds, thus generalizing the results due to Lebeau and Robbiano (1995), cf. also
Sec. 3. of our paper.

REMARK 13. The problem of partial exact (mechanical) boundary controllability
was studied by Liu (1998b). The boundary conditionfgnc T is as follows
au .
Ma_n + A+ wdivun+ax)(m-nu=g,, onl;x(0,7T),

whereg = —(m- n)u is a control. The proof of the relevant Th. 2.3 of Liu (1998b)
should be read with “Correction”; this proof requires a smallness conditien gn
(the coupling parameters).

4.2. DECAY OF SOLUTIONS

Aassila (1998c¢) and Ouazza (1997) studied decay rates of solutions to the following
simplified system of thermoelasticity with nonlinear damping

U— Au+aVo 49U =0, in Q x R,
0 —kAO + Bdiva =0 inQ x RT, 4.3)
u=0,6=0 onl x Rt, '
u(0) = u®, (0 =ut,0(0) =6° inQ.
The energy of the system is defined as follows
1 )
E(t) = é/(|u(t)|2+ IVu®)|? + 16(1)|>)dx. (4.4)
Q

Ouazza (1997) proved thatdfis globally a Lipschitz function such thgt0) =
0 and if there exists a constasit > 0 such that for each € R”,

z-9(2) > alz, (4.5)
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then for each weak solution of (4.3)

E(t) < E(QO)expl — wt), (4.6)
wherew > 0. If g is such as previously and (4.5) holds far> 1, and

z-92) > c2lz”*,
for |zl < 1, then

E(t) <czt™?P ™V >0, (4.7)

wherecz > 0 depends otk (0).
Under weaker assumptions éhandg Aassila (1998c) proved strong stability,
i.e.,, E(t) - 0 ast — oo for every weak solution of (4.3).

4.2.1.

By using the methods of geometric optics (Ralston, 1982) combined with the de-
coupling method due to Henry et al. (1993), Lebeau and Zuazua (1999) studied the
decay of solutions to the following system of thermoelasticity in a bounded domain
Q CR*, n=2or3, of clasC*®

U—pnAu— A+ p)Vdivu+aVe =0 in Q2 x R,
0 — A6 + pdivua =0 onQ x RT, (4.8)
u=0, =0 I x RT, '
u(x, 0) = u%(x), u(x, 0) = ul(x), (x,0 = 6° inQ.

Introduce the following condition:

Condition C. If ¢ € H}(Q)" is such that
—Ap=y%, divg=0; =0 onT, (4.9)

for somey € R, theng = 0. This condition was introduced in 1968 by Dafermos
who proved that, see Lebeau and Zuazua (1999),

E(t) - 0ast >
if and only if the domairt2 satisfies condition (C). The energy is defined by

E(1)

1 2 . 2 . 2 o 2
=5 pIVux, )1+ (& + p)ldivu(x, 1)|° + [0(x, 1)]° + EIQ(x, N|°|dx.
Q
(4.10)

It is easy to show that the energy decreases along trajectories; more precisely

dE(t)
dt

— _% fg V6 (x, 1)|?dx <O0. (4.11)



378 J.J. TELEGA AND W.R. BIELSKI

Condition (C) fails wher2 is a ball inR”.

The question studied by Lebeau and Zuazua (1999) concerns the exponential
decay of the energy. By using the decoupling method due to Henry et al. (1993)
the problem is reduced to the analysis of the Lamé system

b — puAD — (A +p)Vdivd =0 in Q= x (0,7),
®=0 onI'x(071), (4.12)
®(x,0) = ®°x), d(x,0) = ®d(x), in Q.

The general theorems on exponential (uniform) decay rate are formulated as
follows

THEOREM 11. Assume thakz = 2 or 3. In the class of domain& satisfying
condition (C), the exponential decay property

de,w > 0, E(t) < cE(Q)e ™, Vt > 0, (4.13)

for the system (4.8) holds if and only if there exiBts- 0 andc¢; > 0 such that

T
190l 20y + P2 gp < €1 / Idivep (|2, o, dt, (4.14)
0

holds for every solution of the Lamé system (4.13).

THEOREM 12. Assume thatt > 0, A + 2 > Oandu # A + 2u. Assume that

Q is convex or such that there exists a ray of geometric optic® f arbitrar-

ily large length which is always reflected perpendicularly on the boundary. Then
the observability inequality (4.14) for the Lamé system fails for Zny 0 and
therefore the decay of solutions of (4.8) is not uniform.

We observe that convex domains may be classified in two sets:
(i) Those in which condition (C) fails. In this case there are solutions that do not
decay as — oo.
(i) Those in which (C) holds. In this case every solution converges to zero but
without a uniform decay rate. Convex domains are generically in the class (ii). It is
not known whether the class (i) contains any convex domain other than the ball.
Lebeau and Zuazua (1999) studied also the polynomial decay of solutions of
system (4.8).

4.2.2.

Liu (1998b) established a sufficient condition which guarantees the exponential
decay rate of the energy by means of an additional boundary damping. The reason
why the energyE (t) does not tend to zero as— oo is that the total energy is

not dissipated completely in the form of thermal energy. Therefore Liu (1998b)
introduced a velocity feedback on part of the boundary of the thermoelastic body,
which is clamped along the rest of the boundary, to increase the loss of energy.
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The domair is star-shaped and the boundary velocity feedback is assumed in
the following form

6 =0, onl" x R*,
u=20 onI" x RT,
,u% + (A + w)(divu)n (4.15)
+amM-Mu+M-nNu=0, onl'y xRT,
wherea = a(x) is a given nonnegative function dn, with
a € CHIy). (4.16)

The methods of proofs are based on multiplier techniques and the asymptotic
property of the semigroups. By using Russell’s “controllability via stabilizability”
principle (see Russell, 1978), Liu solved also the problepeofial exact boundary
controllability.

4.3. THERMOVISCOELASTICITY

In this section we shall review the results due to Liu and Williams (1998) and Liu
(1998a) on partial exact controllability and exponential stabilization of thermovis-
coelastic systems.

4.3.1.

Consider the problem of partial exact controllability with Dirichlet boundary con-
trols for the following system

i — pAu— (A + pVdivu + aV8 — € [ G(t — 1)[pAU(x, T)

4+ + w)Vdivu(x, t)]ldt = 0, in 0,

6 — A + adivi = 0, in Q,

u=g,0 =0, onx,

ux,0 =0,u(x,00=0,6(x,0 =0, in Q.
(4.17)

Here Q is a star-shaped domain IR of classC?, G(¢) denotes the relaxation
function (see Deseri et al. 1999) agthe control acting on a part &; in fact, on
2 (x9).

For an isotropic material the re@tion function is an isotropic fourth-order,
time dependent tensor. Liu assumes its simplified form with only one essential
component.

The main result of Liu and Williams (1998) is stated as follows.

THEOREM 13. Suppose thaG € H?(0,T) andT > 2R(x°) /. /. Then there
existseqg, ag > 0 such that ife < ¢g anda < «g, then for every statéur, u%) €
L?(Q)"x H~1(Q)" there exists a contral € L?(Z(x?))" steering the displacement
of system (4.18) to the stater, u}.).



380 J.J. TELEGA AND W.R. BIELSKI
We recall thatz (x°) = I'(x%) x (0, T) and
% = {x e '/m(x) - n(x) > 0}.

REMARK 14. (i) Boundary observability inequality (indirect inequality) was es-
tablished by using classical multiplier techniques whilst the main result by the
HUM.

(i) Theorem 13 requires the coefficientsand g to be “small”. The general case
seems to remain an open problem.

(i) The solution (u 6) of system (4.17) satisfies

ue C(0, T1, L3()™) N CY([0, T, H1()"), 418
6 € C([0, T1, L3()). (4.18)

(iv) Liu and Williams (1998) claim, after Lagnese (1990), that it is not possible to
exactly controld by means of the boundary displacement control alone, and it is
physically unrealistic to use as an additional control variable. However, the role
of viscous effect was not revealed.

4.3.2.

Liu (1998a) studied the problem of uniform stabilization of the following thermo-
viscoelastic system with a boundary velocity feedback

U— uAu— (A + pn)Vvdivu
+uG* AU+ (A + p)G * Vdivu +aVe =0, inQ x RT,

0 — AO + Bdiva = 0, in Q x R,

6 =0, onl' x RT,

u=0 only x RY, (4.19)
fap(U— G % U) 4+ (A + p)(div(u — G * u)n
+amM-MU—G*u)+mM-nu=0, onl'y x RT,

u(0) = u®, u(0) = ut, #(0) = 6°, inT; x RT,

u(0) — u(—s) = Wo(s), in Q x Rt.

As previously the domair2 is assumed to be star-shaped and of cla$swe
assume thaf; N I', = @. The sign %" denotes the convolution product in time:

Gxv(t) = / Gt —t)v(x, 7)dr.

o]

The relaxation function satisfies physically plausible assumptions which, in partic-
ular, imply

G(oo) = lim G(1) =0.
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The functiona = a(x) is a given nonnegative function with ¢ C*('!) and
wWP(x, 7) is a specified history. Furthermorg, = max..r, a(x) is assumed to be
small enough and the following condition holds

I'1 # @ ora(x)=£0. (4.20)
Under the above assumptions the thermoviscoelastic energy defined by

E(t) = «|lu@®)l|? -%3|maw2 + 21002
N Higan = 2 Lo T g L2@yr

+/_ G(t —1)|u(t) — u(r)||§,1r1(m,,dr, (4.21)

]

decays exponentially
E@) <cEOe ™™, Vvt>0.

For solutions of (4.19) withu®, ut, 9%, wP) € #. The positive constants can be
explicitly given (the formulae are quite involved) and

K:l—f G(t)dr > 0.
0

The spaces are defined as follows

HE (Q) = {u € H(Q)|u = 00nTy},

H = HE ()" x L¥(Q)" x L*(Q) x L*(G, (0, 00), H (Q)").

The history spacé.?(G, (0, c0), Hf, (€2)") consists of functionsv on (0, co) for
which

o
2 _ 2
W2 0 e = [, GO, e < o

REMARK 15. (i) The proof is based on the semigroup approach, multiplier tech-
niques and Lyapunov methods. The Lyapunov function is of a generalized type.
(i) Liu (1998a) discussed also weakening of the assumptions specified above. In
all cases the problem of the exponential decay of the energy remains open.

5. Final remarks

Chapter 8 of the book by Panagiotopoulos (1993) summarizes the research of this
author and of his coworkers on the optimal control and the parameter identification
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problems of systems governed bgmivariational inequalitieslt seems thahon-
convexanalysis has not yet been incorporated in the study of exact (and approxim-
ate) controllability and stabilization problems. For instance, it would be interesting
to consider nonconvex contact and interface conditions for elastic vibrating bodies.

Another challenging problem would be a study of remodelling of tissues as
control problems, cf. Telega and Lekszycki (2000). It seems that in biological
materials cells play the role of controls.

On account of limited number of pages of this contribution the result related
to asymptotic analysis and elastic structures could not be included, cf. Telega and
Bielski (1999, 2000).
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